
Focusing Search in Multiobjective
Evolutionary Optimization through

Preference Learning from User Feedback

Thomas Fober, Weiwei Cheng, and Eyke Hüllermeier
Department of Mathematics and Computer Science

University of Marburg, Germany
{thomas,cheng,eyke}@informatik.uni-marburg.de

Abstract

The problem of computing the set of Pareto-optimal solutions in multiobjective
optimization has been tackled by means of different approaches in previous years,
including evolutionary algorithms. A key advantage of computing the whole set
of Pareto-optimal solutions is completeness: None of the solutions that might be
maximally preferred by the user is lost. An obvious disadvantage, however, is the
computational effort, which may become prohibitive for high-dimensional problems.
Besides, the resulting set itself may become rather large, making it impracticable to
present the entire set to the user. In order to mitigate these problems, we propose
a method for incorporating user-feedback in the optimization process by asking the
user for pairwise preferences. The pairwise preferences thus produced are then used
as training examples for a preference learning method leading to a hypothetical utility
model that approximate the true but unknown (latent) utility function of the user.
This model is used to focus the search on the most promising parts of the Pareto
front, which is approximated by an evolutionary algorithm.

1 Introduction

In multiple criteria (aka multiobjective) optimization, the goal is to simultaneously opti-
mize a set of potentially conflicting criteria specified in terms of a set of objective func-
tions. A problem of this kind is often transformed into a single-criterion problem first, for
example by replacing the original criteria by their weighted sum, and then solved using
classical optimization techniques afterward. However, since the true weights specifying
the importance of each criterion are normally not known, a solution thus produced may
not be optimal from the user’s point of view.

One possibility to avoid this problem is to compute the complete set of Pareto optimal
solutions, thereby ensuring that none of the solutions that might be maximally preferred
by the user gets lost. The disadvantage of this alternative is the computational effort it
involves, which may become prohibitive for high-dimensional problems. Besides, the
Pareto front itself may become rather large, making it impracticable to present the en-
tire set to the user and expecting her to choose the most preferred solution among these
candidates. Finally, noting that this set is necessarily a finite approximation of the Pareto
front, a solution sufficiently close to a truly optimal one is not guaranteed, so there is still
a danger of ending up with a suboptimal solution.

The two approaches above are in a sense extreme opposites: While the first one pretends
perfect knowledge of the user preferences from the very beginning, the second one re-
mains in this regard completely agnostic till the very end. The idea of this paper is to

��������	
������������������������	����	�����
�	����������	������������ ���

find a trade-off between both extremes. To this end, we propose a method for incorpo-
rating user-feedback in the optimization process. This feedback is used in order to focus
the search on the most promising parts of the Pareto front, which is approximated by a
modification of the NSGA-II algorithm.

More specifically, given the current approximation of the set of Pareto-optimal solutions,
the idea is to ask the user for pairwise preferences: Two solutions from this set are se-
lected, and the user is asked which of these solutions is preferred. The pairwise prefer-
ences thus produced are then used as training examples for a preference learning method,
that is, a machine learning method for inducing a (hypothetical) utility model that approx-
imates the true but unknown (latent) utility function of the user. This model, in turn, is
then used for restricting the current set of Pareto-optimal solutions to those candidates
with the highest (estimated) utility, and this part of the Pareto front is explored in more
detail. The whole process iterates until a termination condition is met.

Our learning algorithm is inspired by methods that have recently been developed in the
fields of preference learning and learning to rank. It is implemented as an online percep-
tron learner that exhibits a number of interesting properties. Most notably, it learns in
an incremental way, which means that new user feedback can be incorporated efficiently
without losing the feedback from previous iterations. Moreover, it is robust toward noise
and guarantees the learned utility function to be monotone increasing in all criteria. Fi-
nally, it also supports an active learning strategy, in which pairwise preference judgments
are not requested for solutions drawn from the Pareto front at random, but instead for
pairs of solutions that are supposedly most informative from a learning point of view.

The remainder of the paper is organized as follows. Subsequent to a brief introduction to
the problem of multiobjective optimization in Section 2, our novel approach to enhancing
corresponding solvers by means of machine learning methods is introduced in Section 3.
Experimental results are presented in Section 4. Finally, Section 5 concludes the paper.

2 Multiobjective Optimization

In multiobjective optimization, a set of functions fi, i = 1, . . . , m is given that have to
be optimized simultaneously. In this paper, we will focus on real-valued optimization
problems, hence the functions are of the form fi : S ⊆ R

n → R. Moreover, and without
loss of generality, we consider minimization problems of the form

minimize {f1(x), . . . , fm(x)}
subject to x ∈ S ⊆ R

n
. (1)

To define optimality, we use a partial ordering �p on Rm. For two vectors v, v′ ∈ R
m,

we write v �p v′ if and only if [v]i ≤ [v′]i for all i = 1, . . . , m and [v]i < [v′]i for some
i = 1, . . . , m. This ordering can be used to define Pareto optimality for the multiobjective
problem: A solution x ∈ S ⊆ R

n is Pareto optimal if there exist no x′ ∈ S ⊆ R
n such

that f(x) �p f (x
′), where f(x) = (f1(x), . . . , fm(x))

T . The solution of (1) is then given
by the set of all Pareto optimal solutions.

In general, since the objectives might be conflicting, there will be more than one Pareto-
optimal solution. Figure 1(a) shows an example for a two-criteria optimization problem
with two conflicting criteria: With increasing x, the function f1 is decreasing whereas

108 Proceedings 21. Workshop Computational Intelligence, Dortmund, 1.-2.12.2011

f2 is increasing. Having the goal to minimize both functions, the optimal solutions in a
Pareto sense will be those indicated by the blue bars on the x-axis.

0 5 10 15 20 25 30−150

−100

−50

0

50

100

150

200

250

300

x

y
f1(x) = (30−x)1.5

f2(x) = x⋅(x − 15)⋅(x − 18)⋅(x − 25)/100

(a) Decision space; Pareto-optimal solutions are
marked by a blue bar on the x-axis

0 20 40 60 80 100 120 140 160
−150

−100

−50

0

50

100

150

200

250

300

f1

f 2

(b) Objective space defined as f1 −→ f2 map-
ping; Pareto optimal set is marked by a blue bold
line

Figure 1: Minimization of the function f : [0, 30]→ R
2 defined by x �→ (f1(x), f2(x))

T ,
where f1(x) =

√
(30− x)3 and f2(x) = x(x− 15)(x− 18)(x− 25)/100

Instead of considering the decision space S ⊆ R
n, one can directly consider the im-

age of the decision space, namely the objective space that consists of vectors f (x) =
(f1(x), . . . , fm(x))

T ∈ R
m. This space is illustrated in Figure 1 (b) for the example of

two objective functions. Here, the optimal Pareto front is visualized in terms of a bold
line.

2.1 Principles to Solve Multiobjective Optimization Problems

As already mentioned in the introduction, multiobjective optimization problems can be
tackled in different ways. Frequently used principles include methods transforming the
multiobjective problem into a single-criterion problem, methods which try to approximate
the complete Pareto front, and interactive approaches that interact with the user during
optimization process.

A transformation of a multiobjective optimization problem into a single-criterion problem
can be accomplished in different ways. The simplest one is to specify a weight for each
function and to use the weighted sum as an objective function. Another idea is to specify
a hypothetical optimal (though not necessarily feasible) multiobjective solution the user
is aiming for and to minimize the distance to this preferred solution. It is also possible to
start with a single criterion and to optimize it. Based on the solution obtained, bounds are
specified for the remaining criteria, thus defining (m − 1) additional constraints. Inde-
pendent of the concrete technique chosen, a single-criterion function is obtained that can
be optimized with state-of-the-art techniques.

The above reduction schemes are clearly appealing at first sight, especially from a com-
putational point of view. One should note, however, that single-objective optimization is
not necessarily an easy problem. Another problem is that weights, hypothetical points
or bounds have to be set beforehand, while information gathered in the course of the op-
timization process is not explicitly used. Finally, different functions can have different
ranges and/or scales, which makes their combination difficult.

��������	
������������������������	����	�����
�	����������	������������ ��!

To overcome these problems, one can approximate the complete Pareto front and present
it to the user who can finally select an element she prefers most. For example, [6, 10]
use evolutionary algorithms which have the benefit of considering a population able to
approximate the Pareto front. The Pareto front, however, can become very large, espe-
cially in high dimensions, leading to computational problems and complexity issues. For
the user, it might be difficult to select a solution from a high-dimensional Pareto front. In
fact, visualization of Pareto sets in higher dimensions is an intricate problem for which
different approaches have been proposed, such as scatter-plot matrices, Chernoff faces,
parallel coordinates or animated meshes.

The third principle focuses on an interactive process with “the user in the loop”. Roughly
speaking, the idea is to exploit user feedback for guiding the optimization process in one
way or the other, notably by learning a kind of utility model. This model can then be used
to focus the search or to transform the problem into a single-criterion one. Methods used
for this purpose include ordinal regression [3], rough sets [7] as well as similarity-based
approaches [11].

3 Interactive Multiobjective Evolutionary Optimization

In evolutionary optimization, the NSGA-II algorithm [6] is the standard approach to solv-
ing multiobjective optimization problems. This algorithm essentially consists of a loop
which is executed after initialization of a start population. By applying mating-selection,
recombination and mutation, a new set of individuals is generated which is used (to-
gether with the current population) to select individuals for the next generation. Since
we consider real-valued optimization problems, we take the operators mating-selection,
recombination and mutation from evolutionary strategies [2].

The selection operator of the NSGA-II algorithm developed for multiobjective problems
tries to approximate the complete Pareto set. This is done by sorting the population ac-
cording to dominance, leading to subpopulations F1 containing all individuals which are
non-dominated, F2 containing those individuals dominated by F1, and so on. More-
over, to distribute individuals uniformly on the Pareto front, a “crowding-distance” is used
which leads to a preference for individuals with no or few other individuals in their neigh-
borhood. Selection is now performed by successively taking the sets Fi (i = 1, 2, . . .)
into the next population until there is no space left for a certain Fj . To fill the complete
population, the individuals in Fj are sorted according to their crowding-distance. Jointly,
these two mechanisms lead to an approximation of the complete optimal Pareto front.

In this paper, we propose a modification of the (environment) selection operator, since
our goal is not to approximate the Pareto front in a uniform way. On the contrary, our
goal is to compute a subset of the Pareto front which is maximally in accordance with the
preferences of the user.

3.1 Focused Evolutionary Strategy

To reach our goal of focusing the search to a region of solutions the user prefers, we
substitute the crowding distance by a utility model that seeks to approximate the (latent)
utility function of the user. The modification of the NSGA-II algorithm thus obtained

110 Proceedings 21. Workshop Computational Intelligence, Dortmund, 1.-2.12.2011

will be called Focused Evolutionary Strategy (FES). For the time being, suppose we have
a technique to calculate a utility model from a set of preferences “f(x) is preferred to
f(x′)”, also written f (x) �u f (x′). A concrete technique of that kind will be introduced
in Section 3.3.

Our algorithm starts as usual with an initialization of the population. After initialization,
however, first the utility model must be trained, before the evolutionary loop can be en-
tered. Having determined the utility model as described in Section 3.3, the evolutionary
loop is executed, which, as already mentioned, is adopted from evolutionary strategies.
Since the corresponding selection operator cannot be applied here, we use non-dominated
sorting as in NSGA-II. However, since our goal is to compute a subset of the Pareto front
which is maximally preferred by the user, instead of approximating it uniformly, we re-
place the crowding distance by our utility model for selecting individuals.

� �

�
��

�
�

� �
��

�

�

�

��

��

� �

�
��

�
�

� �
��

�

�

�

��

��

�	
�	
�	

�	 �	

�		
�		

�		�		

�	

�	

�	

�	

�	 �	

�	 �	
�	

�	 �	

�	�		

�		

�		

��
�		

�		

�		
�		

�		

Figure 2: Difference between the NSGA-II approach (left) and the FES approach (right).
While the former seeks to approximate the Pareto front in a uniform way, the latter tries
to focus on solutions that are presumably preferred by the user.

An illustration is given in Figure 2. In the left picture, the complete Pareto optimal set is
approximated. Consequently, the intermediate solutions (the progress in terms of genera-
tions is indicated by the number of primes) are spread over a large interval also containing
solutions that are probably not of high interest for the user. In the right picture, the search
is focused to the high-utility solutions. Hence, the number of solutions the algorithm has
to consider is much smaller, and the algorithm therefore faster. Moreover, for the user, it
is arguably much more convenient to select the final solution from a reduced set of can-
didates, all of which are probably close to the ideal solution (i.e., the solution having the
highest utility for the user).

3.2 Focused Pareto Selection

The selection operator FPSmust favor solutions that are closer to the optimal Pareto front
and solutions that are preferred by the user, i.e., which have a high value according to the
(latent) utility function of the user—recall that we merely assume the existence of this
function, not that we know it; instead, we seek to learn it.

The FPS operator takes as input the set of individuals used for selection (usually offsprings
or parents and offsprings) and performs non-dominated sorting on this set. This step is

��������	
������������������������	����	�����
�	����������	������������ ���

hence equal to NSGA-II. Let F denote the union F1 ∪ F2 ∪ . . . ∪ Fj , where j is the
smallest index assuring that |F| ≥ μ. Thus, F contains enough individuals to fill the next
population.

The individuals in F are then sorted according to the current utility model, and the μ best
ones are selected. Our utility model is derived from an ensemble of real-valued utility
functions ui, i = 1, . . . , k. As will become clear later on, the diversity of this ensemble
reflects the uncertainty about the true utility function u∗ we seek to approximate. The
utility assigned to an individual x is then defined as

u(x) = max
1≤i≤k

ui(x) .

This optimistic evaluation is obviously in agreement with our goal of not losing any
promising solution. Our selection procedure is illustrated in Figure 3.

Figure 3: Illustration of the FPS selection mechanism: First, candidate solutions are se-
lected according to the dominance criterion (non-filled balls). These solutions are then
evaluated by the utility model. Here, the dashed lines indicate the assigned utility values
(the shorter the line, the larger the utility).

3.3 Learning Preferences and the Utility Model

In the following, we present more details about our utility model. Basically, we assume
linear utility functions of the form

u(x) = u(f(x)) = −〈w, f(x)〉 = −

m∑

i=1

wi · fi(x) , (2)

where w = (w1, . . . , wm)
T is a weight vector and f (x) the vector of the m objective

functions. Each such function induces a total order on the objective space: Given f(x) =
(f1(x), . . . , fm(x)) and f(x′),

f (x) �u f (x′)
df
⇐⇒ u(f(x)) ≥ u(f(x′)).

Note that it makes sense to require

w = (w1, . . . , wm)
T ≥ 0 (3)

112 Proceedings 21. Workshop Computational Intelligence, Dortmund, 1.-2.12.2011

in order to guarantee the monotonicity of the function (2). That is, if one of the criteria
fi increases, while all others remain unchanged, then the utility can only decrease. In this
case, it is also guaranteed that the optimum of (2) is a Pareto-optimal solution of (1).

A linear model is quite attractive from a machine learning point of view, as it is amenable
to efficient learning algorithms and, moreover, to non-linear extensions via “kerneliza-
tion” [12]. The learning problem itself comes down to estimating the weights wi in (2).
To this end, the user is asked for training information in the form of qualitative feedback,
which is typically much easier to acquire than absolute feedback. More specifically, the
user is expected to provide pairwise comparisons of the form ‘f (x) is preferred to f(x′)’.

A set of c pairs f (x), f(x′), each of which is evaluated by the user according to her
preferences, is generated as training information. The parameter c allows one to adapt the
size of the training set to the application at hand. Since it makes no sense to request the
user’s preference for a pair of solutions that can be ordered according to �p, only those
pairs are considered that belong to the same set Fi of incomparable solutions. First, F1 is
used, followed by F2 and so forth, until the required training set T is obtained.

The goal of the learning process is to find a utility function of the form (2) which is
as much as possible in agreement with the training set and also satisfies the monotonicity
property (3). Besides, this function should of course generalize as well as possible beyond
these examples. A key idea in our approach is to reduce the above learning problem to a
binary classification problem. Due to the assumption of a linear model (2) this is indeed
possible: The constraint u(f(x)) > u(f(x′)) induced by a preference (f (x) �u f(x′))
is equivalent to 〈w, f (x)− f(x′)〉 > 0 and 〈w, f (x′)− f (x)〉 < 0. From a classification
point of view, f (x) − f(x′) can hence be seen as a positive example and f (x′) − f (x)
a negative one. To learn (2), the noise-tolerant perceptron algorithm proposed in [9] is
used, leading to a weight vector w = (w1, . . . , wm) eventually defining (2).

3.3.1 Monotonicity

The monotonicity constraint (3) constitutes an interesting challenge from a machine learn-
ing point of view. In fact, this relatively simple property is not guaranteed by many stan-
dard machine learning algorithms. That is, a model that implements a distance function
u(·) may easily violate the monotonicity property, even if this condition is satisfied by all
examples used as training data.

Fortunately, our learning algorithm allows us to incorporate the monotonicity constraint in
a relatively simple way. The well-known perceptron algorithm is an error-driven on-line
algorithm that adapts the weight vector w in an incremental way. To guarantee mono-
tonicity, we simply modify this algorithm as follows: Each time an adaptation of w pro-
duces a negative component wi < 0, this component is set to 0. Roughly speaking, the
original adaptation is replaced by a “thresholded” adaptation.

In its basic form, the perceptron algorithm provably converges after a finite number of
iterations, provided the data is linearly separable. We note that this property is preserved
by our modification [5].

��������	
������������������������	����	�����
�	����������	������������ ��"

3.3.2 Ensembles

Instead of training a single linear utility function (weight vector), we use standard bagging
[4] to train an ensemble consisting of k models (weight vectors) w(i), i = 1, . . . , k, where
k is another exogenous parameter. The purpose of this approach is twofold.

First, noting that our current model is only an estimation of the true utility function of
the user, we seek to capture the uncertainty of this estimation. This uncertainty is in
direct correspondence with the size of the training data set: The larger this set, the more
similar the bagging samples and, therefore, the more similar the models w(i), i = 1, . . . , k
become. Thus, the diversity of the ensemble will decrease in the course of time, by
gathering more and more feedback from the user, which clearly makes sense. Indeed, as
can be seen in Figure 3, the less diverse the ensemble, the more one will focus on a small
subregion of the Pareto front.

Second, as will be detailed next, the ensemble technique is also useful in connection with
the selection of informative queries to be given to the user and used to improve the models.

3.3.3 Updating the Utility Function

The probability of updating the utility functions in a certain generation is controlled by a
parameter pupdate. The update process itself requires the generation of new queries, which
can simply be done by means of a random selection (i.e., using a uniform distribution
on the set of non-dominated tuples from the current population). Indeed, in the first
generation of our evolutionary algorithm, this is arguably the most reasonable approach.
In subsequent generations, however, queries can be generated in a more sophisticated
way.

More specifically, the idea is to select a maximally informative query, i.e., an example
that helps to improve the estimation of utility functions as much as possible. This idea
of generating maximally useful examples in a targeted way is the core of active learn-
ing strategies [13]. In the literature, numerous techniques for active learning have been
proposed, most of them being heuristic approximations to theoretically justified (though
computationally or practically infeasible) methods. Here, we resort to the Query by Com-
mittee approach [13]. Given an ensemble of utility functions, the idea is to find a pair of
functions and a query for which the disagreement between the predictions of these utility
functions is maximal. Intuitively, a query of that kind corresponds to a “critical” and,
therefore, potentially informative example.

In our case, the utility functions are given by the ensemble of perceptrons. Moreover,
given two objective vectors f (x) and f (x′), two utility functions ui and uj disagree with
each other if u(f(x)) > u(f(x′)) while u(f(x)) < u(f(x′)). Various strategies are
conceivable for finding a maximally critical query, i.e., a query for which there is a high
disagreement among the ensemble. In our case, however, we are interested in improving
all models, hence, for each model an informative example is required. Our current imple-
mentation uses the following approach: Let W =

{
w(1), . . . ,w(m)

}
be the set of k weight

vectors of the k utility functions that constitute the current ensemble. First we are identify-
ing the maximally conflicting pair (w(i),w(j)), i.e., the pair that maximizes ‖w(i)−w(j)‖.
Subsequently, using these two weight vectors, the current population is considered and the

114 Proceedings 21. Workshop Computational Intelligence, Dortmund, 1.-2.12.2011

pair (f (x), f(x′)) maximizing |(ui(f (x))−ui(f (x
′)))− (uj(f (x))−uj(f(x

′)))| is cho-
sen. Eventually, a new query is obtained which must be evaluated by the user and which
is finally used to update the utility functions ui and uj in an incremental way.

4 Experimental Study

In the experimental study, we consider an artificial set of multiobjective optimization
problems and compare our approach with the NSGA-II algorithm, using the same genetic
operators in both cases (except the operator used for environment selection). The bench-
mark set was originally proposed in [8] and consists of 13 multiobjective problems. We
chose the functions OAK2, SYM-PART, S_ZDT1 and S_DTLZ2 for our study, since they
exhibit different properties like different dimensionality of decision- and objective space,
separability, modality and geometry. Moreover, a function ū is defined to simulate the
true user preferences. This is done by using a weighted sum of the criteria, where the
weights are drawn randomly in the unit-interval.

We compared NSGA-II and our novel approach FES in terms of the number of function
evaluations and the true utility value eventually obtained (i.e., the true utility of the best
solution in the final population). Obviously, both criteria are related, since the optimiza-
tion result strongly depends on the number of allowed function evaluations. Here, we
consider different numbers of function evaluations, where for a fixed number the exoge-
nous parameters, μ and ν are modified in a systematic way. Moreover, in the case of FES,
the parameters c, k and pupdate are treated in the same manner. Hence, for each value of
allowed function evaluations, a set of utility values is obtained, and these two values can
be plotted as points in a two-dimensional space.

Considering the results illustrated in Figure 4, it clearly turns out that our method com-
pared quite favorably. There are several reasons for this improvement. First of all, NSGA-
II is consuming more function evaluations due to the need for approximating the complete
Pareto front. Moreover, having found the Pareto front, many individuals are needed for
approximating it with a sufficiently high resolution, so as to guarantee a good approxima-
tion to the truly optimal solution. The higher the resolution (due to a larger population
size), the better the approximation will be. At the same time, however, the complexity
will increase, too. In this regard, our approach has a clear advantage, since only a subset
of the Pareto front is approximated, which can be accomplished with a smaller popula-
tion size. Moreover, the utility functions are focusing the search, so that the number of
function evaluations which is needed for optimization is further reduced.

5 Conclusions and Outlook

We have proposed a method that employs machine learning techniques for incorporat-
ing user-feedback in multiobjective optimization. More specifically, the user is asked to
express preferences in the form of pairwise comparisons between candidate solutions.
These preferences are used as training examples for a preference learning method leading
to a utility model that approximates the true but unknown (latent) utility function of the
user. This model in turn is used to focus the search on the most promising parts of the set
of Pareto-optimal solutions, which is approximated by an evolutionary algorithm. First

��������	
������������������������	����	�����
�	����������	������������ ��#

0 0.5 1 1.5 2
x 104

0

0.5

1

1.5

2

2.5

3

number of function evaluations

m
ax

 tr
ue

 u
til

ity
 in

 s
ol

ut
io

n

(a) OAK2 (n = 3,m = 2)

0 0.5 1 1.5 2
x 104

26

28

30

32

34

36

38

number of function evaluations

m
ax

 tr
ue

 u
til

ity
 in

 s
ol

ut
io

n

(b) SYM-PART (n = 10,m = 2)

0 1 2 3 4 5 6
x 105

0

10

20

30

40

number of function evaluations

m
ax

 tr
ue

 u
til

ity
 in

 s
ol

ut
io

n

(c) S_ZDT1 (n = 10,m = 2)

0 5 10 15 20
x 104

30

40

50

60

70

number of function evaluations
m

ax
 tr

ue
 u

til
ity

 in
 s

ol
ut

io
n

(d) S_DTLZ2 (n = 10,m = 8)

Figure 4: Results on the four benchmark function: Circles and crosses represent, respec-
tively, solutions found by NSGA-II and FES; results of a method which are dominated
are removed.

experimental studies using NSGA-II as a benchmark have shown that our approach is able
to achieve significant gains in terms of the complexity/utility tradeoff.

As mentioned before, our approach principally allows for substituting the linear model
by any other utility model. In this regard, kernels function are of special interest, since
they allow to model non-linear dependencies between the objective-functions. In further
experiments, more complex utility functions, different from the weighted sum, should
therefore be considered. Although we selected a representative subset of the CEC’07
benchmark set, we intent to consider the complete benchmark set together with a more
comprehensive parameter study, e.g., by using specialized toolboxes like [1]. Moreover,
additional experiments are planned which simulate errors done by the user. Since our
learning technique is error-tolerant, we expect a substantial gain in performance even in
this case.

References

[1] Bartz-Beielstein, T., Flasch, O., Koch, P., Konen, W.: SPOT: A toolbox for in-
teractive and automatic tuning of search heuristics and simulation models in the R
environment. Technical Report, Cologne University of Applied Sciences, Germany
(2010).

116 Proceedings 21. Workshop Computational Intelligence, Dortmund, 1.-2.12.2011

[2] Beyer, H.-G., Schwefel, H.-P.: Evolution strategies: A comprehensive introduction.
Natural Computing, 1 (2002) 3-52

[3] Branke, J., Greco, S., Slowinski, R., Zielniewicz, P.: Interactive evolutionary mul-
tiobjective optimization using robust ordinal regression. In: Evolutionary Multi-
Criterion Optimization. Springer, Heidelberg, Germany (2009) 554-568

[4] Breiman, L.: Bagging predictors. Machine Learning, 26 (1996) 123-140.

[5] Cheng, W.: Interactive ranking of skylines using machine learning techniques. Mas-
ter’s Thesis, OvG-Universität Magdeburg, Germany (2007).

[6] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2)
(2002) 182-197

[7] Hernandez-Diaz, A. G., Santana-Quintero, L. V., Coello Coello, C., Caballero, R.,
Molina, J.: A new proposal for multi-objective optimization using differential evo-
lution and rough sets theory. Proceedings of the 8th annual conference on Genetic
and evolutionary computation, Seattle, WA, USA (2006) 675-682

[8] Huang, V. L., Qin, A. K., Deb, K., Zitzler, E., Suganthan, P. N., Liang, J. J., Preuss,
M., Huband, S.: Problem definitions for performance assessment on multi-objective
optimization algorithms. Technical Report, Nanyang Technological University, Sin-
gapore (2007)

[9] Khardon, R., Wachman, G.: Noise tolerant variants of the perceptron algorithm.
The Journal of Machine Learning Research 8 (2007) 227–248

[10] Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the
Pareto Archived Evolution Strategy. Evolutionary Computation, 8(2) (2000) 149-
172

[11] Krettek, J., Braun, J., Hoffmann, F., Bertram, T.: Preference modeling and model
management for interactive multi-objective evolutionary optimization. In: Proc.
IPMU 2010, Dortmund, Germany (2010) 584 ff.

[12] Schölkopf, B., Smola, A.: Learning with Kernels: Support Vector Machines, Regu-
larization, Optimization, and Beyond. MIT Press (2001)

[13] Seung, H., Opper, M., Sompolinsky, H.: Query by committee. In: Computational
Learning Theory. (1992) 287–294

��������	
������������������������	����	�����
�	����������	������������ ���

