
Learning Similarity Functions from
Qualitative Feedback

Weiwei Cheng and Eyke Hüllermeier
University of Marburg, Germany



Introduction

Proper definition of similarity (distance) measures is 
crucial for CBR systems.

The specification of local similarity measures, pertaining 
to individual properties (attributes) of a case, is often less 
difficult than their combination into a global measure.

Goal of this work:
Using machine learning techniques to support elicitation 
of similarity measures (combination of local into global 
measures) on the basis of qualitative feedback.
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Problem Setting

Local-global principle: The global distance is an aggregation of 
local distances 

For now, we focus on a linear model:

with           (monotonicity). 

… easy to incorporate background knowledge
… amenable to efficient learning scheme
… non-linear extension via kernelization
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Problem Setting cont.

Learning the weights from qualitative feedback:
means “case a is more similar to b than to c”.

Given a query, a distance measure induces a linear order on 
cases:                           

Notice: Often the ordering of cases is more important than the 
distance itself             it is sufficient to find a       , such that 
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The Learning Algorithm

Basic idea: From distance learning to classification 

Extension 1: Incorporating monotonicity

Extension 2: Ensemble learning 

Extension 3: Active learning
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From Distance Learning to Classification
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CASE BASE

(d-dim. vector)



Our model                                     

requires that                  when a local distance 
increases, the global distance cannot decrease.  

Our approach: (Noise-tolerant) Perceptron learning with 
a modified update rule:

Monotonicity
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The modified algorithm provably converges 
after a finite number of iterations.



Ensemble Learning
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Goal:
Reducing the feedback effort of the user by choosing the 
most informative training data.

Our approach (a variation of QBC):
1. choose 2 most conflicting models
2. generate 2 rankings with these 2 models
3. get the first conflict pair of these rankings

Example:

Active Learning
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ranking 1:  a b c d e

ranking 2:  a b d e c



Experimental Setting
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Goal:
Investigating the efficacy of our approach and the 
effectiveness of the extensions:

1. incorporating monotonicity
2. ensemble learning
3. active learning

Data sets

uni iris wine yeast nba

#features 6 4 13 24 15
#cases 200 150 178 2465 3924



Quality Measures
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Kendall’s tau (a common rank correlation measure)

… defined by number of rank inversions (normalized to [-1,+1]):

Recall (a common retrieval measure) 
... defined as number of predicted among true top-k cases (k=10):

Position error
… defined by the position of true topmost case (minus 1):
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Extension to Nonlinear Models 
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Actually, we only need linearity in the coefficients, not in the 
local distances. Therefore, some generalizations are easily 
possible, such as 

More generally, with                                            :



Extensions 
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Special case of a kernel function leads to kernelization:

Nonlinear classification and sorting

(a, b, c)

b c

classifier

(b, c)

0.7

distance



Conclusions

7/31/2009Weiwei Cheng & Eyke Hüllermeier13/13

Learning to combine local distance measures 
into a global measure.

Only assuming qualitative feedback of the type 
“a is more similar to b than to c”.

Reduction of distance learning to classification.
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