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What is Multilabel Classification?

 Conventional classification
 Instances are associated with a single label from a 

set     of finite labels
 if binary classification;
 if multi-class classification.

 Multilabel classification
 Instances are associated with a set of labels             .
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Existing Methods

 Quite a number of methods for multilabel classification have been 
proposed, most of them being model-based approaches (training a 
global model for prediction).

 Our work is especially motivated by MLKNN:
Zhang & Zhou. ML-kNN: A lazy learning approach to multi-label learning. 
Pattern Recognition, 2007, 40(7): 2038-2048.

In a number of practical problems, MLKNN shows very strong 
performance and even outperforms RankSVM and AdaBoost.MH. 

 Still, many methods ignore the correlation between labels.
A paper with label CS is more likely having label Math, than Law.
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Our Contributions

 A new multilabel learning method,

 which is based on a formalization of instance-based 
classification as logistic regression (combination of 
model-based and instance-based learning),

 takes the correlation between labels into account and 
represents it in an easily interpretable way.
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IBL as Logistic Regression

Key idea: 
Consider the labels of neighbors as “extra features” of an instance

age weight height sex w.child

26 62 1.83 male no 1

16 45 1.65 female no 0

28 85 1.90 male yes 1

... ... 

27 50 1.63 male yes ?test instance

nearest
neighbors

Does he like basketball?
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IBL as Logistic Regression

Extra feature: 2 among 3 
neighbors like basketball

Extended representation:

age weight height sex w.child

26 62 1.83 male no 1/3 1

16 45 1.65 female no 0 0

28 85 1.90 male yes 2/3 1

... ... 

27 50 1.63 male yes 2/3 ?

#
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IBL as Logistic Regression (binary case)
Consider query instance      , distance                          ,
posterior probability                                       :

For example, we can define .

Now consider the whole neighborhood of      :

7/16bias term (prior probability) evidence for positive class



From distance to similarity

The standard KNN classifier is recovered as a special case:
• Set              , and 

•

IBL as Logistic Regression (binary case)
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IBL as Logistic Regression

Same idea for multilabel case:
Consider the labels of neighbors as “extra features” of an instance

age weight height sex w.child

26 62 1.83 male no 1 0 1

16 45 1.65 female no 0 1 0

28 85 1.90 male yes 1 0 1

... ... 

27 50 1.63 male yes ? ? ?test inst.

NN

Does he like basketball?
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IBL as Logistic Regression

Extra feature: 1 among 3 
neighbors like table tennis

Extended representation:

age weight height sex w.child

26 62 1.83 male no 1/3 0 1 1 0 1

16 45 1.65 female no 0 1 1/3 0 1 0

28 85 1.90 male yes 2/3 0 1 1 0 0

... ... 

27 50 1.63 male yes 2/3 1/3 1/3 ? ? ?

# # #
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IBL as Logistic Regression (multilabel case)

Example:

To what extent does the presence of 
label basektball in the neighborhood 
increase the probability that football is 
relevant for the query?

We solve one logistic regression problem for each label!
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IBL as Logistic Regression (multilabel case)
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Multilabel prediction rule

Ranking rule



Experiments



 Tested methods: 
 MLKNN
 Binary relevance learning (BR) with logistic regression, C4.5 and KNN
 Label powerset (LP) with C4.5
 Our method: IBLR-ML

dataset domain #inst. #attr. #labels card. 
emotions music 593 72 6 1,87
image vision 2000 135 5 1,24
genbase biology 662 1186(n) 27 1,25
mediamill multimedia 5000 120 101 4,27
reuters text 7119 243 7 1,24
scene vision 2407 294 6 1,07
yeast biology 2417 103 14 4,24
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 Hamming loss

 one error

 coverage

 rank loss

 average precision
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Nemenyi test with p=0.05
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critical distance



Contributions of Our Work
 Novel approach to IBL, applicable to classification in general and 

multilabel classification in particular.

 Key idea: Consider label information in the neighborhood of a 
query as “extra features” of that query.

 Balance between global and local inference automatically optimized 
via fitting a logistic regression function.

 Interdependencies between labels estimated by regression 
coefficients.

 Extension: Logistic regression combining “normal features” with 
“extra features”.
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IBLR-ML is available in the MULAN Java library, 
maintained by the 
Machine Learning & Knowledge Discovery Group, 
University of Thessaloniki.

http://mlkd.csd.auth.gr/multilabel.html
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