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Outline of the Talk +

=  Contribution:
We introduce a new method for (probabilistic) binary classification, called
choquistic regression, which generalizes conventional logistic regression
and takes advantage of the Choquet integral as a flexible and expressive
aggregation operator.

= Qutline:
(1) Background on logistic regression
(2) Generalization to choquistic regression

(3) First experimental results



Logistic Regression ~‘—

= Logistic regression modifies linear regression for the purpose of predicting
(probabilities of) a binary class label instead of real-valued responses.

= The basic model:
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log-odds ratio —> log( (y_0|m)>:wo+zwi'wi
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| linear function of
where predictor variables
- x = (x1,22,...,Tm) € R™ is an instance to be classified,
— w = (wy,Wa,...,Ww,) €R™ isa vector of regression coefficients,

— wo € R is a constant bias (the intercept).



Logistic Regression: Class Prediction +

= Equivalently, this can be expressed in terms of posterior probabilities:

Ply=1|z) = (1 + exp(—wg — fwTa:)) -

P(y=0|e)=1-P(y=1|z)

= Predictions are typically made using the following decision rule:
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Logistic Regression: Parameter Estimation +

= The parameters of the model (bias, regression coefficients) can be
obtained through Maximum Likelihood (ML) estimation.

= Given a sample of i.i.d. data
D= {7y} < ®" x{01})",
i=1
the likelihood function is given by
I[P (y =y Iw(i)) ,
i=1
and the ML estimate is the maximizer of (the log of) this function:
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Logistic Regression: Important Features ~‘—

= Logistic regression is very popular and widely used in practice.

= |tis comprehesible and easy to interpret, especially since the influence of
each variable can easily be captured from the model:

Ply=1|z)\ _
log = wo Hwilx1+wo -0+ ...+ Wy Tm
P(y=0|z) 7

direction and strength of influence of
the first variable on the log-odds ratio
(probability of positive class)

= Moreover, monotonicity can easily be assured by fixing the sign of
regression coefficients: If a variable increases, then the probability of the
positive class must only increase (decrease)!
= this is crucial in many applications (e.g., medicine)
- violation of monotonicity may often lead to the refusal of a model



From Logistic to Choquistic Regression

A disadvantage of logistic regression is a lack of flexibility:

In many applications, the assumption of a linear dependency
(between predictor variables and log-odds ratio), and hence a
linear decision boundary in the instance space, is not valid!

linear decision boundary nonlinear decision boundary
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From Logistic to Choquistic Regression J o

= Adisadvantage of logistic regression is a lack of flexibility:
In many applications, the assumption of a linear dependency
(between predictor variables and log-odds ratio), and hence a
linear decision boundary in the instance space, is not valid!

=  Key question addressed in this paper:

How to increase the flexibility of logistic regression without losing

its advantages of interpretability and monotonicity?

= Qurgeneral idea is to replace the linear model by the Choquet integral as a
more flexible operator for aggregating the input attributes!



From Logistic to Choquistic Regression

4 ) —1
Logistic y=1|x) = (1 + exp ( —wy —w'x ))

P(
P(yzl\w):(l—l—exp( —7(Cu(®) — ) ))_1

Choquet integral of
(normalized) attribute values

= |t can be shown that, by choosing the parameters in a proper way, logistic
regression is indeed a special case of Choquistic regression.



Choquistic Regression: Interpretation

Interpretation of choquistic regression as a two-stage process:

(1) a (latent) utility degree u = C,(x) € |0, 1] is determined by the
Choquet integral
(2) a discrete choice is made by thresholding u “probabilistically” at

Probabilistic thresholding: decision function (probability
0.8 of chosing positive class),
steepness determined by
( ) 1 0.6 precision parameter
0.4¢
1+eXp(_’Y(CM(m)_B)> y=0 Yy =00
1\ 1\ 0.2}
precision of utility % 0.2 0.4 0.6 08 1
the model threshold utility u estimated by the Choquet integral
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Discrete Choquet Integral: A Brief Reminder ~‘—

A fuzzy measure on C' = {cy,ca,...,cpm } is a set function p : 2¢ — [0, 1] which is

— monotonic: u(A) < u(B) for ACBCC
— normalized: p(0) =0 and p(C) =1

The discrete Choquet integral of f : C — R, with respect to u is defined as

follows:
m

Cu(f) = (flew) — fle-1)) - m(Aw)

i=1
where (-) is a permutation of {1,...,m} such that 0 < f(c(1)) < f(c)) < ... <
f(c(m)), and A(i) = {C(i), ceey C(m)}.

In our case, f(c;) = x; is the value of the i-th variable.



Choquistic Regression: Interpretation +

* The fuzzy measure u specifies the importance of subsets of predictor
variables, i.e., their influence on the probability of the positive class.

= Due to the non-additivity of this measure, it becomes possible to
model interaction effects, thereby expressing complementarity and
redundancy of variables.

For example, what is the joint effect of {smoking,age}on the
probability of cancer, as opposed to the sum of their individual
influences?

=  Formally, measures like Shapley index and intercation index can be
used, respectively, to quantify the importance of individual and the
interaction between different variables.

Monotonicity is obviously assured by the Choquet integral, too.



Choquistic Regression: Parameter Estimation +

= We need to identify the following model parameters:
— the fuzzy measure u
— the utility threshold 3

— the precision parameter vy

= The fuzzy measure, in its most general form, has a number of
parameters which is exponential in the number of attributes
- critical from a computational complexity point of view

= Again, we follow a Maximum Likelihood (ML) approach; the Choquet
integral is expressed in terms of its Mobius transform:

Cu(f) = > m(T) x min f(c;) .

c;, €T
TCC



Choquistic Regression: Parameter Estimation +

= ML estimation leads to a constrained optimization problem:

min 7 Y (1 =) Cm(@?) = 8) + Y log (1+exp(—y (Cm(@?) - 5))

subject to:

threshold and precision

0 < 6 <1 } conditions on utility

0<7vy
Z m(T) =1
normali'zz?tion and TCC
monotonicity of the =
fuzzy measure Y mBU{g}) >0 VACCVeeC
BCA\{ci}

- solution with sequential quadratic programming
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Experimental Evaluation

ke

Experimental comparison with monotone logistic regression

Collection of data sets for which monotoniticy is a plausible assumption

Classification error determined by means of cross validation

data set

logistic

choquistic

ESL
ERA
LEV
DBS
CPU
CEV
CYD-1
CYD-2
CYD-3
CYD-4
CYD-5
CYD-6
CYD-7

0.0621 + 0.0096
0.2849 4+ 0.0140
0.1669 £+ 0.0134
0.1443 +-0.0371
0.0400 £ 0.0093
0.1883 £ 0.0066
0.1254 £+ 0.0074
0.2004 £+ 0.0091
0.1512 £+ 0.0238
0.1289 £+ 0.0253
0.1242 £+ 0.0099
0.1604 + 0.0085
0.1958 £ 0.0207

0.0547 +0.0105
0.2756 = 0.0170
0.1340 4+ 0.0115
0.1560 £ 0.0405
0.0119 +0.0138
0.0346 + 0.0076
0.0729 + 0.0066
0.0717 +-0.0078
0.0762 - 0.0163
0.0496 + 0.0201
0.0204 £ 0.0057
0.0383 +0.0083
0.0646 + 0.0089

Choquistic regression achieves
consistent gains

Higher interaction between
variables tends to come with
higher gain
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Conclusions & Outlook +

= We introduced a new method called choquistic regression, a
generalization of conventional logistic regression for binary classification.

= Choquistic regression

— combines probabilistic modeling underlying logistic regression with the advantages of
the Choquet integral as a flexible aggregation operator, notably its capability to
capture interactions between predictor variables;

— thereby, it becomes possible to increase flexibility while preserving core features of
logistic regression, namely interpretability and monotonicity.

= First experimental results confirm advantages of choquistic regression in
terms of predictive accuracy.

= Ongoing work: Restriction to k-additive measures, for a properly chosen k
— full flexibility is normally not needed and may even lead to overfitting the data
— advantages from a computational point of view

— key question: how to find a suitable k in an efficient way?



Back up (Influence of precision parameter)
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