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ABSTRACT
Motivation: Antiretroviral treatment regimens can sufficiently
suppress viral replication in HIV infected patients and prevent the
progression of the disease. However, one of the factors contributing
to the progression of the disease despite ongoing antiretroviral
treatment is the emergence of drug resistance. The high mutation rate
of HIV can lead to a fast adaptation of the virus under drug pressure,
thus to failure of antiretroviral treatment due to the evolution of drug-
resistant variants. Moreover, cross-resistance phenomena have been
frequently found in HIV-1, leading to resistance not only against a
drug from the current treatment, but also to other not yet applied
drugs. Automatic classification and prediction of drug resistance is
increasingly important in HIV research as well as in clinical settings,
and to this end, machine learning techniques have been widely
applied. Nevertheless, cross-resistance information was not taken
explicitly into account, yet.
Results: In our study, we demonstrated the use of cross-resistance
information to predict drug resistance in HIV-1. We tested a set of
more than 600 reverse transcriptase sequences and corresponding
resistance information for six nucleoside analogues. Based on
multilabel classification models and cross-resistance information, we
were able to significantly improve overall prediction accuracy for all
drugs, compared to single binary classifiers without any additional
information. Moreover, we identified drug-specific patterns within the
RT sequences that can be used to determine an optimal order of
the classifiers within the classifier chains. These patterns are in good
agreement with known resistance mutations and support the use of
cross-resistance information in such prediction models.
Contact: dominik.heider@uni-due.de

1 INTRODUCTION
The human immunodeficiency virus (HIV) is one of the major
human diseases leading to about 2 million deaths yearly. Although
antiretroviral treatment is working quite well in principle, the high
mutation rate of HIV frequently leads to a fast adaptation of the
virus and thus to the development of drug resistant viral strains.
Tripathi et al. (2012) performed stochastic simulations of the within-
host evolution of HIV-1. By estimating the structure of the HIV-1
quasispecies, they were able to calculate an error threshold of HIV-
1. They discovered that HIV-1 has a mutation rate that is very close
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to error catastrophe and that the error threshold depends heavily on
the recombination rate of HIV-1 (Tripathi et al., 2012). Pennings
(2012) analyzed the evolution of resistance in HIV-1 due to standing
genetic variation. She ascertained that, depending on the treatment,
probabilities of evolution of drug resistance due to standing genetic
variation vary between 0 and 39%.

The most important parameters for the evolution of drug
resistance are the effective population size of the virus before
treatment and the fitness of the resistant virus during treatment.
Evolution of drug resistance finally leads to a failure of antiretroviral
treatment and thus to the progression of disease. Experimental
testing of viral resistance in patients have been widely used in
research as well as in clinical settings to gain information about
the way drug resistance evolve. In contrast to these experimental
phenotypic assays, computational approaches offer the possibility to
predict drug resistance in HIV-1 in a very easy and fast way based on
short sequence information of the viral genotype, e.g. the sequence
of the viral reverse transcriptase. Such computational models for
predicting drug resistance in HIV-1 have been developed and widely
applied. These computational models are mainly based on statistical
or machine learning methods that try to find a mapping from the
sequence information to a “resistance factor“. Usually, the IC50

ratios1 are used in these models to define resistance. In general,
drug resistance means reduced inhibition of viral replication by
antiretroviral drugs, resulting in increased IC50 values. The IC50

values of the drug resistant isolates and HIV wildtype are used to
calculate resistance factors

IC50(drug concentration for resistant strain)

IC50(drug concentration for wild type)
,

as a standardized measure of HIV drug resistance. The data is
separated into the classes “susceptible“ and “resistant“ based on
a drug-specific cutoff of the resistance factor. A computational
model is then trained based on these data pairs (sequence and
corresponding class), which can then be used to predict the
resistance factor or the resistance class for new unseen sequences.
For instance, Rhee et al. (2006) used five different statistical and
machine learning methods (decision trees, artificial neural networks,
support-vector machines, least-squares regression and least angle

1 The concentration of a specific drug inhibiting 50% of viral replication
compared to cell culture experiments without the drug is defined as IC50

(50% inhibitor concentration).
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regression) to predict drug resistance in HIV-1 for 16 drugs,
including protease- and reverse transcriptase inhibitors. Kierczak
et al. (2009) developed a rough set-based model considering
physico-chemical changes of mutated sequences compared to the
wildtype strain to predict reverse transcriptase inhibitor resistance
in HIV-1. Moreover, the same group developed the first systems
biology approaches to HIV-1 drug resistance, showing networks of
interacting positions (Kierczak et al., 2010).

One very important finding, however, has not been exploited in
these models so far, namely the occurrence of cross-resistance. In
the context of HIV-1, cross-resistance means that mutations leading
to a resistance against a specific drug, which is currently part of the
antiretroviral treatment of a specific patient, also leads to resistance2

against other drugs (that may or may not be part of the same
treatment). In the current study, we analyzed cross-resistance in
HIV-1 for a dataset of more than 600 reverse transcriptase sequences
and six nucleoside analogues (NAs), namely Lamivudine (3TC),
Abacavir (ABC), Zidovudine (AZT), Stavudine (d4T), Didanosine
(ddI) and Tenofovir (TDF). Moreover, we developed a model that
exploits knowledge about cross-resistance to improve the overall
prediction accuracy for the whole repertoire of drugs used in
this study. To this end, we made use of novel methods for so-
called multilabel classification, a generalization of conventional
(polychotomous) classification that has recently gained increasing
attention in machine learning (Tsoumakas and Katakis, 2007).

To the best of our knowledge, this is the first time information
about reverse transcriptase inhibitors cross-resistance has been
explicitly integrated in HIV-1 drug resistance prediction models.
In contrast to protease inhibitors (PIs) as well as non-nucleoside
reverse transcriptase inhibitors (NNRTIs), NAs have less side-
effects (Stürmer et al., 2007). Moreover, the combination of
different drug-classes during therapy may lead to unpredictable
interactions of PIs and NNRTIs with the cytochrome P450 system
and thus may complicate the therapy. Therefore, one option might
be the use of quadruple nucleoside therapy (Stürmer et al., 2007).

2 METHODS

2.1 Data
For our analyses, we used a publicly available dataset consisting of reverse
transciptase (RT) sequences of HIV-1 with corresponding resistance factors
(IC50 ratios) for six nucleoside analogues (NAs), namely Lamivudine
(3TC), Abacavir (ABC), Zidovudine (AZT), Stavudine (d4T), Didanosine
(ddI) and Tenofovir (TDF) (Rhee et al., 2006). A summary of the dataset
is shown in Table 1. For our method, we needed RT sequences for which
IC50 ratios for all mentioned drugs are available, so we discarded the
information about TDF (due to the low number of sequences) and merged
the other sequences and IC50 ratios of the remaining drugs. Strains lacking
phenotypic results for any drug analyzed in the current study were discarded
prior to analysis. Eventually, this yields 614 RT sequences with IC50 ratios
for 3TC, ABC, AZT, d4T and ddI. The class ratio (positive samples /
negative samples) for all drugs ranges between 0.83 and 2.39. All sequences
originated from subtype B strains.

2 In some cases, albeit less frequently, it could also lead to a re-sensitization
for other drugs.

Table 1. Data overview

Drug number of sequences IC50 ratio cutoff class ratio*

3TC 629 ≥ 3 2.18
ABC 624 ≥ 2 2.39
AZT 626 ≥ 3 0.91
ddI 628 ≥ 1.5 1.03
d4T 626 ≥ 1.5 0.83

*:ratio of resistant vs. susceptible sequences

2.2 Predictive Modeling
The goal of our study was to build models that can be used to predict whether
there are resistance mutations within an RT sequence of a specific virus
for different nucleoside analogues. Thus, we used drug-specific cutoffs for
the IC50 ratios to separate the sequences into the classes “resistant” and
“susceptible” for the different drugs. For 3TC and AZT, the cutoff was set
to 3, for d4T and ddI it was set to 1.5, and for ABC it was set to 2. This
means that sequences having a corresponding IC50 ratio above or equal to
the cutoff are defined as “resistant” (see Table 1), whereas sequences having
an IC50 ratio below the cutoff are defined as “susceptible“. For instance, an
RT sequence with an ratio of 10.3 for 3TC is defined as “resistant”, whereas
another RT sequence with an ratio of 2.5 is defined as “susceptible”.

In some studies, e.g. Rhee et al. (2006), a third class was defined as
“intermediate resistant”. Nevertheless, since “intermediate resistant” strains
are somehow resistant, too, we simply subsumed those sequences under
the “resistant” category. The resulting classes are rather balanced: for each
drug (except for 3TC and ABC), around 50% of the RT sequences belong
to the class “resistant” and 50% to the class “susceptible”. Concretely,
the fraction of RT sequences categorized as “resistant” are, respectively,
50.81%, 47.72%, 45.44%, 68.57% and 70.52% for ddI, AZT, d4T, 3TC and
ABC.

As already demonstrated in several protein classification studies, e.g.
(Chowriappa et al., 2008; Dybowski et al., 2010; Heider et al., 2009,
2010), the use of physico-chemical properties and especially the use of
hydrophobicity characteristics (Kyte and Doolittle, 1982), lead to very
good prediction results. Thus, we encoded the RT protein sequences into
hydrophobicity vectors and normalized them to length 240, which represents
the average sequence length in the dataset, using Interpol (Heider and
Hoffmann, 2011). Thus, we eventually end up with a dataset consisting of
614 instances (RT sequences), each of which is characterized in terms of a
normalized hydrophobicity vector of length 240. Moreover, each instance is
associated with five binary class labels, namely resistance for ddI, AZT, d4T,
3TC and ABC. Our goal, now, is to train a model that generalizes beyond
these examples, i.e., that allows for accurately predicting each of the five
outputs on the basis of any normalized hydrophobicity vector given as input
information.

2.3 Multilabel Classification
The above problem obviously falls in the realm of (binary) classification, a
well-established and thoroughly explored subfield of statistics and machine
learning. In fact, the arguably most simple way to solve it is to train
one binary classifier for each of the five outputs, thereby splitting the
original multi-output problem into five single-output problems. Each of
these problems can then be solved individually, using the large repertoire
of existing methods for binary classification.

This approach has an important disadvantage, however: It cannot take any
advantage of possible dependencies between the different outputs. Modeling
and exploiting such dependencies in order to improve prediction accuracy
is one of the key goals of multilabel classification (MLC). Intuitively, if the
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value of one output may (statistically) depend on the value of others, then
predicting all outputs simultaneously should indeed be better than predicting
them separately. This is the main argument against simple decomposition
techniques like the one proposed above, called binary relevance (BR)
learning in the context of MLC.

More formally, let L = {λ1, . . . , λm} be a finite set of class labels
(in our case the resistance for the five drugs), and let X be an instance
space (in our case the 240-dimensional hydrophobicity vectors). An MLC
task assumes a training set S = {(x1,y1), . . . , (xn,yn)}, generated
independently and identically according to a probability distribution
P(X,Y) on X × Y . Here, Y is the set of possible label combinations,
i.e., the power set of L. To ease notation, we define a label combination y

as a binary vector y = (y1, y2, . . . , ym), in which yj = 1 indicates the
presence (relevance) and yj = 0 the absence (irrelevance) of λj . Under this
convention, the output space is given by Y = {0, 1}m. The goal in MLC is
to induce from S a model h : X −→ Y that correctly predicts the subset
of relevant labels for unlabeled query instances x ∈ X . Recall that, in our
context, “relevance of a label” stands for “resistance against a drug”; thus, a
prediction y = (1, 0, 1, 0, 0) would suggest that the instance (RT sequence)
at hand is resistant against the first and the third drug while being susceptible
to the others.

Performance metrics The prediction of label subsets (vectors) instead of
single labels suggests different types of performance metrics for MLC.
Commonly used examples of such metrics, that also seem to be meaningful
in the context of our application, include the Hamming loss, the subset
0/1 loss and the F-measure. Let Xtest = {x1, . . . ,xN} be a set of test
instances. Moreover, let yi• = (yi,1, . . . , yi,m) ∈ Y be the labeling of
test instance xi, where yi,j is the value of label λj for xi, and denote
by ŷi• = (ŷi,1, . . . , ŷi,m) the corresponding prediction produced by the
classifier. The Hamming loss of the prediction ŷi• is then defined as the
fraction of labels whose relevance is incorrectly predicted:3

LH(yi•, ŷi•) =
1

m

m∑
j=1

Jyi,j 6= ŷi,jK ∈ [0, 1] (1)

The subset 0/1 loss simply checks whether the complete label subset is
predicted correctly or not:

LS(yi•, ŷi•) = Jyi• 6= ŷi•K ∈ {0, 1} (2)

The F-measure essentially corresponds to the harmonic mean of the
precision and recall of the prediction; it is defined as follows:

LF (yi•, ŷi•) =
2
∑m

j=1 yi,j ŷi,j∑m
j=1 yi,j +

∑m
j=1 ŷi,j

∈ [0, 1] , (3)

where 0/0 = 1 by definition. The above metrics are used to evaluate
the prediction ŷi• for an individual instance xi, i.e., they are computed
instance-wise. Correspondingly, in an experimental study, the average
accuracy would be reported as the average over all instances xi in the test
data Xtest.

Apart from that, another option is of course to report accuracy in a label-
wise manner, namely to compute standard performance metrics such as
classification rate (percentage of correct predictions) or AUC (Area under the
ROC Curve) separately for each label λi ∈ L. Note that some metrics can be
computed instance-wise as well as label-wise. For example, the label-wise
version of the F-measure is given by

LF (y•j , ŷ•j) =
2
∑N

i=1 yi,j ŷi,j∑N
i=1 yi,j +

∑N
i=1 ŷi,j

∈ [0, 1] , (4)

where y•j = (y1,j , . . . , yN,j) is the vector of values for the label λj and
ŷ•j the corresponding vector of predictions.

3 For a predicate P , the expression JP K evaluates to 1 if P is true and to 0
if P is false.

2.4 Classifier Chains
Until now, several methods for multilabel classification have been proposed
in the literature. Here, we shall focus on a method called classifier chains
(Read et al., 2011), which, despite having been introduced only lately,
already enjoys great popularity. This is arguably due to the fact that it
is based on a simple and elegant yet effective idea for capturing label
dependencies.

The classifier chains (CC) method learns m binary classifiers (each one
dealing with the binary relevance problem associated with one label) linked
along a chain, each time extending the feature space by all previous labels in
the chain. For instance, if the chain follows the order λ1 → λ2 → . . . →
λm, then the classifier hj responsible for predicting the relevance of λj is
of the form

hj : X × {0, 1}j−1 −→ {0, 1} . (5)

The training data for this classifier consists of (expanded) instances
(xi, yi,1, . . . , yi,j−1) labeled with yi,j , that is, original training instances
xi supplemented by the relevance of the labels λ1, . . . , λj−1 preceding λj
in the chain. Thus, the classifier hj supposed to predict the label of class λj
makes use of the preceding labels as additional input information, thereby
capturing possible dependencies between the labels. Theoretically, the CC
approach can be motivated by the product rule of probability (Dembczyński
et al., 2010):

P(y |x) =
m∏

k=1

P(yk |x, y1, . . . , yk−1) (6)

Note that, for training the classifier (5), any standard method for binary
classification can be used (logistic regression, decision trees, support vector
machines, etc.).

At prediction time, when a new instance x needs to be labeled, a label
vector ŷ = (ŷ1, . . . , ŷm) is produced by successively querying each
classifier hj . Note, however, that the inputs of these classifiers are not
well-defined, since the supplementary attributes yi,1, . . . , yi,j−1 are not
available. These missing values are therefore replaced by their respective
predictions: y1 used by h2 as an additional input is replaced by ŷ1 = h1(x),
y2 used by h3 as an additional input is replaced by ŷ2 = h2(x, ŷ1), and so
forth. Thus, the prediction y is of the form

y =
(
h1(x), h2(x, h1(x)), h3(x, h1(x), h2(x, h1(x))), . . .

)
The process of training a classifier chain and using it for prediction is
illustrated in Figure 1.

2.5 Ensembles of Classifier Chains
Realizing that the order of labels in the chain may influence the performance
of the classifier, and that an optimal order is hard to anticipate, Read et al.
(2011) propose the use of an ensemble of CC classifiers. This approach
combines the predictions of different random orders and, moreover, uses
a different sample of the training data to train each member of the ensemble.
Ensembles of classifier chains (ECC) have been shown to increase prediction
performance over CC by effectively using a simple voting scheme to
aggregate predicted relevance sets of the individual chains: For each label
λj , relevance is predicted by thresholding the proportion ŵj of classifiers
predicting yj = 1 at a level t, i.e., ŷj = Jŵj ≥ tK.

3 RESULTS AND DISCUSSION
The major goal of our experimental study was to provide empirical
evidence for the conjecture that capturing statistical dependencies
between HIV-1 drugs is instrumental in learning classifiers for
resistance prediction. Dependencies of that type are biologically
plausible and suggested by the observation of cross-resistance;
besides, they are also confirmed by our data: Table 2 shows
the pairwise associations between the binary class labels (drugs),

3
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Fig. 1. Illustration of the classifier chains approach: training phase (above)
and prediction phase (below).

expressed in the form of the phi coefficient.4 As can be seen, the
dependency between the resistance for different drugs is positive
throughout and specifically high for the two pairs 3TC/ABC and
AZT/d4T. This observation is in perfect agreement with attribute
importance analyses on the basis of random forest classifiers that
were trained for each class individually, which are in partial
agreement with recent expert-defined resistance mutations (Johnson
et al., 2011) and other computational approaches, e.g. Kierczak
et al. (2010). As can be seen in Figure 2, for 3TC as well as ABC, the
most important sequence positions (often selected as discriminative
attributes by the classifiers) are found in the C-terminal part with the
highest peak at position 184. For the other drugs, namely AZT, d4T
and ddI, the highest peaks are spread at the C-terminal as well as
at the N-terminal part, e.g. 41, 70, 210 and 215. Some nucleoside
analogues resistance patterns are well known (Stürmer et al., 2007),
e.g., the so-called thymidine analogue mutations (TAMs) at position
41, 65, 67, 70, 210, 215 and 219, leading to varying levels of
AZT and d4T resistance (Garcia-Lerma et al., 2003; Lafeuillade
and Tardy, 2003; Antinori et al., 2006). Another important mutation
at position 184 is also reflected in the importance analyses. The
mutation M184V is associated with high-level 3TC resistance as
well as with ABC resistance. For ABC resistance also mutations
at positions 65, 74 and 115 could be found during ABC therapy.
Moreover, mutation patterns at position 151 in combination with
mutations at position 62, 69, 75, 77 and 116 are also associated with
high-level resistance against AZT, 3TC and ABC (Sirivichayakul
et al., 2003). Interestingly, position 65, which is associated with a
broad cross-resistance in almost all NAs except for AZT, has also a
high importance for the AZT classification. Nevertheless, random
forest importance analyses have some limitations, as they only
estimate the importance of a sequence position for the classification,
but do not provide information whether a specific sequence position
is positively or negatively associated with resistance; moreover, they
do not provide information about interacting sequence positions that

4 This coefficient is equal to the Pearson correlation for binary variables and
is also closely connected to the χ2 statistics.

Table 2. Values of the phi coefficient, a measure of association that
ranges between −1 (perfect negative dependency) and +1 (perfect positive
dependency).

3TC ABC AZT D4T DDI
3TC 1.0 0.824 0.274 0.364 0.618
ABC 0.824 1.0 0.381 0.489 0.614
AZT 0.276 0.381 1.0 0.804 0.392
d4T 0.364 0.489 0.804 1.0 0.538
ddI 0.618 0.614 0.392 0.538 1.0

Table 3. Average classification rate of logistic regression models trained on
different input information (original and supplemented). The numbers are
determined through 10-fold cross validation repeated 5 times. The best result
per label is highlighted in bold font.

input 3TC ABC AZT d4T ddI
x 0.821 0.764 0.689 0.702 0.667
x + 3TC — 0.766 0.696 0.701 0.689
x + ABC 0.833 — 0.698 0.758 0.675
x + AZT 0.816 0.769 — 0.725 0.667
x + d4T 0.815 0.797 0.742 — 0.694
x + ddI 0.852 0.776 0.711 0.735 —

contribute to resistance. For a comprehensive structural analysis
and interpretation of resistance mutations in RT see (Kierczak
et al., 2010). Interestingly, phylogenetic analyses of the sequences
using a neighbor-joining approach (Gouy et al., 2010) as well as
principal component analysis on the distance matrix showed that
the sequences cannot be easily separated into the different resistance
classes based only on the sequence information (see supplementary
Figure 1 and supplementary Figure 2).

It is important to note, however, that a positive correlation
between labels does not necessarily imply a benefit for prediction. In
particular, while the above correlation is an unconditional measure
of dependence between class labels, a multilabel classifier such
as CC seeks to capture conditional dependencies, namely the
dependence between class labels given the input information x.
Table 3 shows the average misclassification rates of classifiers
(logistic regression) that have been trained for the individual class
labels λi on different input information, namely (i) the original
predictor variables x and (ii) this feature vector supplemented by
the resistance information of one of the other drugs λj ; thus, we
simply assumed that λj was already known when λi needs to be
predicted. As can be seen, 3TC benefits more from knowing ddI than
from knowing ABC, and d4T benefits more from ABC than from
AZT. Another possible effect that cannot be excluded and could
have an influence on our findings is treatment history. Unfortunately,
the treatment histories in the dataset are highly diverse. However,
most of the patients have an unknown treatment history or have not
been treated yet (see http://hivdb.stanford.edu). Thus we assume that
treatment history might play only a minor role in our model.

The current study was related to the idea of classifier chains in so
far as class labels λj are used as additional predictor variables for
other labels λi. Here, however, we assumed the true values yj of
the additional predictor to be known, not only for training but also
for prediction. In chaining, on the other hand, the true values yi are
only known in the training step, whereas for prediction, they have

4
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Table 4. Performance of BR, CC and ECC in terms of instance-wise metrics
(mean ± standard deviation), in brackets the rank. Logistic regression was
used as base learner.

Hamming loss subset 0/1 F-measure
BR .2695± .0235 (2) .6905± .0519 (3) .6741± .0420 (3)
CC .2697± .0266 (3) .6904± .0528 (2) .6788± .0417 (2)
ECC .2384± .0538 (1) .6312± .0538 (1) .7166± .0366 (1)

to be replaced by their estimates ŷi. Thus, although the last study
confirms the potential benefit of label information for prediction
purposes, it is not clear that label dependencies can indeed be
exploited in a practically realistic setting where other labels are not
known at prediction time.

3.1 The Effect of Chaining
To analyze the practical usefulness of classifier chaining, we
compared the prediction accuracy of the following methods:

• Binary relevance (BR): A single binary classifier is trained
independently for each of the five labels.

• Classifier chains (CC): The five classifiers are trained according
to the CC approach outlined in Section 2.4. The chain was
constructed by sorting the labels in decreasing order according
to their individual (BR) prediction accuracy:5

3TC→ ABC→ AZT→ d4T→ ddI

• Ensembles of classifier chains (ECC): The ECC method
described in Section 2.5 was implemented with 10 chains, each
time choosing the order of labels at random. The threshold t
was taken as 1/2.

All methods were implemented with standard logistic regression as
a base learner. Prediction performance was measured in terms of
the Hamming loss (1), the subset 0/1 loss (2) and the F-measure
(3) as instance-wise metrics, and the classification rate, the AUC
and the F-measure (4) as label-wise metrics. Each of these metrics
was estimated by means of a 10-fold cross validation repeated 5
times, and results are reported in terms of the mean values and the
standard deviations. Moreover, we also indicate the ranking of the
three methods, with the best performing method on rank 1 and the
worst performing method on rank 3.

The results for the instance-wise metrics are summarized in
Table 4, those for the label-wise metrics in Table 5. Although
the differences are not always statistically significant, as can be
seen from the standard deviations, the overall picture is very clear
and obviously in favor of the chaining methods. In fact, chaining
achieves systematic (albeit sometimes small) gains in comparison
to standard binary relevance learning. Among the two chaining
methods, ECC performs even stronger than CC and typically yields
the best results.

5 This is a commonly used rule of thumb, which is motivated by the
observation that mistakes of a single classifier tend to be propagated along
the rest of the chain (Senge et al., 2013); consequently, strong classifiers
should be placed at the top and poor ones more toward the end of the chain.

Table 5. Performance of BR (top), CC (middle) and ECC (bottom) in terms
of label-wise metrics (mean ± standard deviation), in brackets the rank.
Logistic regression was used as base learner.

classification rate AUC F-measure
3TC .8192± .0512 (2) .8394± .0638 (2) .8623± .0441 (2)
ABC .7524± .0543 (3) .7551± .0613 (3) .8176± .0478 (3)
AZT .6960± .0590 (3) .6963± .0631 (3) .6819± .0534 (3)
d4T .7004± .0483 (3) .7119± .0621 (2) .6613± .0748 (3)
ddI .6846± .0657 (2) .6779± .0888 (3) .6820± .0769 (2)
3TC .8192± .0512 (2) .8394± .0638 (2) .8623± .0441 (2)
ABC .7584± .0538 (2) .7602± .0592 (2) .8211± .0469 (2)
AZT .7004± .0578 (2) .7025± .0612 (2) .6837± .0574 (2)
d4T .7021± .0616 (2) .7107± .0650 (3) .6665± .0790 (2)
ddI .6716± .0450 (3) .6819± .0620 (2) .6701± .0525 (3)
3TC .8403± .0548 (1) .9119± .0472 (1) .8814± .0425 (1)
ABC .7980± .0440 (1) .8566± .0390 (1) .8541± .0375 (1)
AZT .7488± .0565 (1) .8282± .0543 (1) .7378± .0549 (1)
d4T .7211± .0515 (1) .8115± .0506 (1) .6874± .0683 (1)
ddI .6999± .0569 (1) .7761± .0576 (1) .7058± .0514 (1)

Table 6. Performance of BR, CC and ECC in terms of instance-wise metrics
(mean ± standard deviation), in brackets the rank. Random forests (of size
16) were used as base learner.

Hamming loss subset 0/1 F-measure
BR .2159± .0298 (3) .5775± .0476 (3) .7455± .0366 (3)
CC .2129± .0459 (2) .5098± .0514 (2) .7631± .0459 (2)
ECC .1947± .0255 (1) .4961± .0476 (1) .7787± .0344 (1)

Table 7. Performance of BR (top), CC (middle) and ECC (bottom) in terms
of label-wise metrics (mean ± standard deviation), in brackets the rank.
Random forests (of size 16) were used as base learner.

classification rate AUC F-measure
3TC .8289± .0515 (2) .8910± .0520 (2) .8815± .0403 (2)
ABC .8235± .0473 (3) .8575± .0530 (3) .8828± .0348 (3)
AZT .7852± .0582 (2) .8800± .0446 (3) .7827± .0589 (3)
d4T .7655± .0451 (3) .8603± .0351 (3) .7417± .0582 (3)
ddI .7177± .0634 (2) .7962± .0483 (3) .7292± .0618 (2)
3TC .8289± .0515 (2) .8910± .0520 (2) .8815± .0403 (2)
ABC .8295± .0473 (2) .8705± .0484 (2) .8861± .0348 (2)
AZT .7965± .0630 (2) .8726± .0527 (3) .7928± .0626 (2)
d4T .7721± .0598 (2) .8668± .0454 (2) .7603± .0652 (2)
ddI .7085± .0497 (3) .7922± .0525 (3) .7373± .0464 (2)
3TC .8392± .0493 (1) .8942± .0439 (1) .8905± .0386 (1)
ABC .8404± .0375 (1) .8801± .0462 (1) .8943± .0281 (1)
AZT .8144± .0420 (1) .8976± .0361 (1) .8125± .0447 (1)
d4T .7970± .0503 (1) .8901± .0341 (1) .7831± .0590 (1)
ddI .7357± .0392 (1) .8215± .0394 (1) .7573± .0420 (1)

To make sure that the results are not too much influenced by the
underlying base learner used by all methods, we repeated the same
experiments with random forests (Breiman, 2001) instead of logistic
regression. These two learners exhibit quite different properties. In
particular, while logistic regression fits a linear decision boundary in
the instance space, decision trees are much more flexible and able to
model highly non-linear concepts; this flexibility is even increased
by the aggregation of different trees in the random forest approach.
Thus, it comes at no surprise that the performance of all methods is
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Fig. 2. Importance analyses from single classifiers
On the x-axis the sequence positions are shown, whereas the y-axis represents the sum of all decreases in Gini impurity. Feature importance for five single
random forests was assessed using the sum of all decreases in Gini impurity, which has been shown to be more robust compared to the mean decrease in
accuracy (Calle and Urrea, 2010).
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in general improved. Nevertheless, in terms of relative comparison,
the picture is more or less identical to the first experiment with
logistic regression: Both chaining methods improve upon BR, with
ECC being even better than CC (see Table 6 and Table 7).

4 CONCLUSION
We conclude with an affirmative answer to one of the main questions
of our study, namely whether or not cross-resistance information can
be used to improve overall accuracy in drug resistance prediction.
By using multilabel classification methods, a relatively recent
development in machine learning, we were able to exploit cross-
resistance information for RT inhibitors. More concretely, our
results are based on a specific multilabel classification method called
classifier chains.

We consider these results as very promising and, therefore,
intend to further explore this direction in future work. On the
methodological side, we would like to try alternative MLC methods,
including the probabilistic variant of classifier chains proposed by
Dembczyński et al. (2010) but also approaches that are not based
on the idea of chaining. As an interesting property of the former,
let us mention that it does not only produce binary predictions, but
proper probability estimates of single labels or label combinations.
Predictions of that kind are quite interesting, not only for the
minimization of various loss functions, but also for the purpose
of representing uncertainty. Moreover, we want to include multi-
class and regression models to be able to predict more classes, e.g.
intermediate resistance, and even the resistance factors.

On the application side, our study has focused on nucleoside
analogues so far, although a typical clinical treatment includes
drugs from several classes. It might of course be interesting to test
our approach for other types of antiretroviral drugs, for example
non-nucleoside reverse transcriptase inhibitors, and for other target
proteins, such as HIV-1 protease and corresponding protease
inhibitors. By now, our approach is limited to very specialized
treatment cases and thus is currently not well applicable in clinical
settings. However, in the future we plan to adapt our approach for
NNRTIs as well as for PIs. Moreover, all sequences used in the
current study originated from subtype B strains, thus the results of
our model might be misleading if it is applied to other subtypes.

SUPPLEMENTARY FIGURES
Figure 1 - Phylogenetic tree of the RT sequences
Analyses was performed using Seaview 4.2.5 (Gouy et al., 2010).
Sequence identifiers are as follows: sequence number - resistance
against 3TC (1=yes, 0=no) - ABC (1=yes, 0=no) - AZT (1=yes,
0=no) - d4T (1=yes, 0=no) - ddI (1=yes, 0=no).

Figure 2 - Principal component analysis
PCA was performed on the distance matrix of the RT sequences.
First two principal components (PC1 and PC2) are used for plotting.
susceptible: virus is not resistant against 3TC/ABC/AZT/d4T/ddI;
one: virus is resistant against one drug; two: virus is resistant against
two drugs; three: virus is resistant against three drugs; four: virus
is resistant against four drugs; five: virus is resistant against all
analyzed drugs.
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