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ABSTRACT
The prediction accuracy of any learning algorithm highly
depends on the quality of the selected features; but often, the
task of feature construction and selection is tedious and non-
scalable. In recent years, however, there have been numerous
projects with the goal of constructing general-purpose or
domain-specific knowledge bases with entity-relationship-
entity triples extracted from various Web sources or col-
lected from user communities, e.g., YAGO, DBpedia, Free-
base, UMLS, etc. This paper advocates the simple and yet
far-reaching idea that the structured knowledge contained
in such knowledge bases can be exploited to automatically
extract features for general learning tasks. We introduce
an expressive graph-based language for extracting features
from such knowledge bases and a theoretical framework for
constructing feature vectors from the extracted features.
Our experimental evaluation on different learning scenarios
provides evidence that the features derived through our
framework can considerably improve the prediction accu-
racy, especially when the labeled data at hand is sparse.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Design, Experimentation

Keywords
query language, semantic features, structured knowledge

1. INTRODUCTION
Machine learning tasks often require identifying complex

patterns from data and use these patterns to make appro-
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priate decisions. For example, a typical task in supervised
learning is to predict labels for unseen data items based on a
training sample of labeled data items. The problem is often
formulated as finding a function f : X → Y which maps
objects x ∈ X to labels or target values y ∈ Y. Typically,
the problem is broken down into two steps.

1. Choose a fixed feature map φ : X → F which takes
input items x ∈ X and maps them to feature vectors
φ ∈ F , where one often chooses F = R

n.

2. Define a (parameterized) class H of functions h ∈ H
with h : F → Y and learn (the parameters of) the best
function.

The predictive power of the learned classifier depends
strongly on choosing a feature map φ that is informative
with respect to the prediction task at hand. In the case of
F ⊂ R

n the components of the feature vector φ ∈ F are
referred to as features.

In the machine learning literature, the input items x have
traditionally been identified with their feature representa-
tion φ(x), and often the second of the two problems above
has been considered in isolation. This may be natural if the
data set is already given in the form (φ(i), y(i)). However, for
more and more large-scale learning problems that are typical
for web-scale applications of machine learning, the situation
is different. Consider, for example, the case of building a
machine learning system for movie recommendation. The
training data consists of users, movies and ratings (of movies
by users). Suppose further that we are in possession of a
knowledge base that contains information about users and
movies. Instead of manually constructing and extracting
user features and item features, would it not be great if we
could specify a query that automatically constructs feature
vector representations of users and items to be used by the
machine learning system? Note, that the availability of such
a mechanism would turn the knowledge base into a re-usable
feature store that can provide different features for different
applications.

The process of building appropriate features often involves
two phases: A feature construction phase and a feature
selection phase. In this paper, we will mainly be concerned
with the question of how to construct good features from
semantic knowledge bases. To this end we devise query
patterns for constructing features from knowledge bases,
in which the stored information is organized as entity-
relationship-entity triples, e.g., in an RDFS representation.
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Figure 1: Sample knowledge graph from the YAGO
knowledge base. The shaded nodes represent classes
of entities, the remaining nodes represent individu-
als, and the edge labels represent relationships.

Such a knowledge base could be derived from a specific
domain or from open, general-purpose RDF data sources
such as YAGO [19], DBpedia [18], and LOD [17]. Figure
1 gives an example of a knowledge graph that organizes
information about the movies “Léon”, “Nikita” and “Black
Swan” in the form of entities and relationships.
State-of-the-art knowledge bases typically have ontolog-

ical components that organize entities into class-subclass
hierarchies based on the isA or type and subClass rela-
tionships (see Figure 1). These taxonomic components are
useful for understanding the roles of entities at different
levels of abstraction. For example, a given movie may be
in the class “French movies”, which may be a sub-class of
“European movies”, which in turn could be a sub-class of
“Movie”. Other features about entities could be derived from
their common relations to other entities, e.g., production
dates, movie casts, costs, etc. Feeding these features to a
suitable machine learning algorithm would enable it to learn
a concept like user preference at the right level of abstraction
from data. A framework that would allow the construction
of this kind of features would be a significant step towards
integrating the world of structured knowledge with that of
machine learning.

2. RELATED WORK
The problem of improving predictive performance by

incorporating structured knowledge has been addressed in
previous work, especially in the fields of text classification
and information retrieval [1, 2, 3, 4, 5, 6, 7, 8]. Despite
a number of interesting results, the conclusions drawn
from these works are multi-faceted, i.e., sometimes the
structured knowledge is of benefit, and sometimes, even
with carefully tuned NLP procedures and well-organized
additional features, no clear empirical benefits are observed.
The reasons for such negative observations are of course
manifold and often task dependent. It is, however, worth
noticing that most of the previous research in this realm
focuses on semantics derived from the lexical level, which
means that structured knowledge has been derived from
the underlying text corpus by various parsing, pattern-

matching, or other NLP techniques. Even when corpus-
independent general-purpose knowledge sources are used
(such as WordNet or other thesauri), the main features that
are exploited are based on synonymy. For hypernymy-based
features derived from general-purpose taxonomic thesauri,
such as WordNet, it has been empirically shown that they
can provide performance gains [1, 2, 8]. Along similar
lines, [4, 5] provide preliminary evidence that class-oriented
features derived from domain-specific knowledge bases can
improve the underlying learning task. Therefore, we go
one step further and advocate entity-relationship-oriented
features with rich contextual and abstraction levels derived
from related individuals and class-subclass hierarchies of
state-of-the-art knowledge bases. In what follows, we discuss
some of the previous work in more detail.

Scott et al. [1] incorporate the hypernymy information
provided by WordNet into the Ripper rule learning sys-
tem [9]. Tests on Reuter-21578 data show that the achieved
improvement is category dependent. More specifically, when
comparing with the conventional bag-of-words representa-
tion, the semantic features turn out to be effective for a small
subset of categories. Later work, such as [8], by Kehagias et
al., and [2], by Moschitti et al., follows the same line as [1],
while taking more datasets and more classifiers into consid-
eration. But neither [8] nor [2] provides sound evidence that
the additional semantic features are attractive alternatives
to the bag-of-words features. However, the authors of [2]
have pointed out that the rather disappointing outcome of
their analysis should not be taken as a general conclusion on
the role of semantic features in classification tasks. It merely
suggests that the elementary textual representation is very
effective in many cases. And indeed, when the text is written
consistently and the words are discriminative, there is not
much room for improvement. However, more recent work,
like [4], by Degemmis et al., and [5], by Bloehdorn et al.,
has reported more promising results. A key advantage of [4,
5] over earlier work is that the adapted features come from
domain-specific ontologies. In [4], for example, background
knowledge that is manually extracted from the Internet
Movie Database (IMDb)1 has improved the classification
on the EachMovie dataset. Similarly, in [5] the MeSH
thesaurus2 (a tree-shape ontology that has been compiled
out of the Medical Subject Headings of the United States
National Library of Medicine) has led to better results than
the more general WordNet in numerous cases, especially
when medical knowledge is of interest.

Much of the related work done in the area of information
retrieval has been in the context of query expansion tech-
niques [3, 7]. Recent work by Lu et al. [6] proposes document
and query-side processing to extract entity-oriented features.
The proposed technique outperforms a major commercial
web search engine3 by 4% on average in terms of DCG@5.

Another domain in which structured knowledge has been
widely adopted is question-answering. In [11], the usefulness
of semantic features for such systems is well recognized and
emphasized. Moreover, [10] points out that even simple
question-answering approaches that use limited background
knowledge can significantly improve a system’s ability to find
appropriate answers. This is also shown by the outstanding
success of the Watson system [22], which exploits state-of-

1http://www.imdb.com/
2http://www.nlm.nih.gov/mesh/
3It was not pointed out which search engine it was.



the-art knowledge bases to compete with humans in the
Jeopardy game.

2.1 Contributions
In all the above methods, the described semantic features

are quite shallow; often they are derived from the under-
lying corpus through different NLP techniques, and when
background knowledge is used, synonymy and hypernymy
have been the main selection criteria. Furthermore, in those
approaches that use background knowledge for feature gen-
eration, the construction of semantic features is somewhat
ad-hoc, in that it does not follow a general and unified
construction strategy. This makes the methods, from an
evaluation point of view, incomparable (even when they use
the same background knowledge) and often difficult to re-
implement.
The contributions of this paper are the following.

• We introduce an expressive theoretical framework for
constructing semantic features from a given knowl-
edge base organized as a triple store. For a given
entity, the framework allows the construction of entity-
relationship-oriented features at different levels of ab-
straction.

• We discuss various strategies for incorporating the
above features into a prediction model.

• Finally, we give experimental evidence for the effec-
tiveness of semantic features constructed through the
proposed framework.

The remainder of the paper is organized as follows. In
Section 3.1 we introduce a graph-based query language for
extracting entity-relationship-based features from a knowl-
edge base. In Section 3.2 we present the theoretical
framework for the construction of feature vectors and give
an overview of viable methods for their applicability. The
experimental evaluation of our approach is presented in
Section 4.

3. SEMANTIC FEATURES
In the following we assume that we are given a corpus

C over the elements of which we aim to make predictions
(e.g., Web documents, tweets, movie descriptions, product
reviews, etc.), a learning method M that expects semantic
features about the entities that are recognized in C, a
knowledge base K = (G, E ,R,Q), where E and R ⊂ E are
the entities and relationships that are represented in K, re-
spectively, G ⊆ E ×R× E is the knowledge graph (of entity-
relationship-entity triples) stored in K, and Q represents
a set of functions (or a query language) for querying the
knowledge base. Furthermore, a basic assumption is that
E(C) ⊂ E(K), where E(C) and E(K) denote the sets of entities
in the corpus and in the knowledge base, respectively.
For the construction of semantic features, we start out

with the following tasks. Given an entity x ∈ E(C) which has
been recognized in the corpus, (1) use the knowledge base
K to extract semantic features, (2) provide an automatic
mechanism for constructing a vector φ(x) from the extracted
features. For the first task, we propose a graph-based
query formalism that builds on SPARQL [15], the W3C
recommendation for querying RDF data; for the second
task we provide a theoretical framework for constructing the
desired feature vector.

3.1 Querying for Semantic Features
In the literature, there have been numerous proposals for

query languages on graph-structured data. Most prominent
among these are declarative languages such as SPARQL [15],
Conjunctive Datalog, or NAGA [20]. Both SPARQL and
NAGA have been designed for querying triple stores, which
represent semantic networks. A query can be viewed
as a semantic graph consisting of entities, relationships
and variables. The variables of the query are substituted
appropriately with entities or relationships by matching the
given parts of the query and its structure with a subgraph
from the underlying knowledge graph G. Syntactic sugar
aside, a basic query for the above languages can be defined
as follows.

Definition 3.1. Basic Query. A query over a set of
variables V for a knowledge graph G ⊆ E×R×E is a semantic
connected graph q ⊆ (E ∪ V)× (R∪ V)× (E ∪ V).

We see that a query is basically a graph, the edges of
which are triples from the set (E ∪ V)× (R ∪ V)× (E ∪ V).
A query answer is defined as a subgraph of G that matches
the query graph, or more specifically:

Definition 3.2. Query Answer. An answer to a query
q on a semantic graph G is a graph homomorphism σ : q 7→
σq ⊆ G that preserves the given entity and relationships in q,
and substitutes the variables with entities and relationships
from G.

In addition, SPARQL provides useful mechanisms for
performing projections or aggregations on the variables of
the query. For example, for a query q a projection is defined
as the set πv1,...,vk (q) of entities and relationships that are
substituted for the variables v1, ..., vk ∈ V(q) of q in the
query answers. In SPARQL this is enabled through a SELECT
clause4 (see also example in Section 3.1.1).

Another useful functionality of SPARQL is the aggrega-
tion on the results of a query q. The aggregation function is
given by γf1(v1),...,fk(vk)(πv1,...,vk (q)), where v1, ..., vk ∈ V(q)
are variables of q and each fi is an aggregation function
(e.g., COUNT, SUM, MAX, AVG, etc.) that is applied to the
entities or relationships substituted for the variable vi.
Additionally SPARQL provides useful operators such as
DISTINCT, for removing duplicates, UNION, for building the
union of results, OPTIONAL, for query edges that should be
matched optionally, etc. For further information on the
functionality of SPARQL we refer the reader to [15].

NAGA on the other hand does not support projection
and aggregation but goes beyond the basic queries defined
in 3.1 by allowing the definition of regular expressions over
relationships in the query edges. More specifically a NAGA
query is defined as follows.

Definition 3.3. NAGA Query. Let RegEx(R) be the
set of all regular expressions over R. A NAGA query over
a set of variables V for a knowledge graph G ⊆ E ×R×E is
a semantic connected graph q ⊆ (E ∪ V)× (RegEx(R)∪V)×
(E ∪ V).

An answer to a NAGA query is defined similarly to
Definition 3.2, with the difference that now entire paths
from G can match the regular-expression of a query edge;

4In general the SELECT clause returns a multiset. The
keyword DISTINCT can be used to remove duplicates.



this is the case when the sequence of relationship labels on
an answer path matches the regular expression of the query
edge. For an explicit definition of an answer to a NAGA
query we refer the reader to [20].
The main point about NAGA queries is that they are

useful when the relationships are transitive or when multiple
relationships are of interest. For example, we could be inter-
ested in the query that asks for all genres and superclasses
of the movie Black Swan in the knowledge graph. The
corresponding NAGA query would be:

Black_Swan hasGenre|(type subClass*) ?x

In the above example, ?x represents a variable. The
hasGenre relationship accesses the movie genres of Black
Swan, type returns all direct classes of Black Swan, and
subClass returns the superclasses of a given class. Finally,
‘|’ reflects the “OR” condition in the query, and the Kleene
star captures the transitivity of the subClass relationship.
An answer to the above query would replace the variable
?x with a genre or a superclass of the movie ‘Black Swan’.
Assuming that Figure 1 represents the knowledge graph G,
a possible answer to the above query graph could be:

Black_Swan type Hollywood_Movie
Hollywood_Movie subClass American_Movie
American_Movie subClass Movie

For our goal of providing the user with a powerful tool
for extracting meaningful graph-based features for entities,
we need a query language that is expressive enough (e.g.,
enables the access of class and relationship information
about entities in a transitive fashion) and thus allows us
to select features at an adequate level of abstraction and
granularity. To this end we combine the advantages of
SPARQL with those of NAGA. Hence, we refer to the
extension of SPARQL by the regular expression capabilities
of NAGA as the Extended SPARQL Query Language, or
ESPARQL for short.
We present some useful ESPARQL query patterns for

feature construction in the following paragraph.

3.1.1 Exemplary Query Patterns
Suppose we were interested in all the entities from the

knowledge graph G that are neighbors of an entity e that
was recognized in the corpus C. This could be useful for
text classification tasks, when the underlying text corpus is
sparse, and when the given entity has never been seen before.
The corresponding query is shown below. Exemplary results
to such queries on the YAGO knowledge base are given in
Sections 3.2.2 and 4.3.2.

SELECT ?r ?x
WHERE { (e ?r ?x) UNION (?x ?r e) }

Note that the entity e might occur as a subject or an object
in the triples of G.
Another generic query for feature extraction is the one

that asks for all superclasses of an entity e that was
recognized in C.

SELECT DISTINCT ?x
WHERE { e type subClass* ?x }

Note that we are using the regular expression type
subClass* to access all the superclasses of e.
Now suppose that a movie m was recognized in the corpus

C. By using ESPARQL we can be precise about the semantic

features we aim to extract for m. The example query below
asks for the number of Oscar-winning actors or directors of
m.

SELECT COUNT (DISTINCT ?x)
WHERE { ?x starredIn|directed m.

?x hasWon Oscar_Award }

Another problem in classification is the case in which the
feature representing a given entity does not generalize. For
example, extrapolating a model of user behavior based on
user IDs is often impossible. However, such a model could
be derived if the IDs could be grouped by the social or
geographical groups they belong to. A practical example is
given when users are represented by IP addresses. A generic
ESPARQL query pattern for generalizing the description of
a user with ID u is depicted below.

SELECT ?y
WHERE { ?x hasID u.

u belongsToUserLocation ?y.
?y type subClass* country }

The above query enables the representation of users by their
country information. In this example the user ID could
be similar to an IP address and could belong to a specific
country.

Note that all query patterns presented here are modular
in nature and can be composed to derive richer semantic
information from the knowledge base. Consequently, as we
will see in the next section, our framework is modular as
well. It allows the storage and composition of ESPARQL
queries on demand (analogously to stored procedures). The
question that we still need to answer is how to represent the
semantic information extracted through ESPARQL queries
adequately for a given learning task. This question is
addressed in the next section.

3.2 Constructing Feature Vectors
Some of the most popular methods for solving supervised

learning tasks, such as (generalized) linear models, k-nearest
neighbors, kernel methods, etc., exploit a feature-based
representation of the input data to deal with the prediction
task. The typical computation that needs to be carried out
by the above methods is the inner product between a weight
vectorw and a feature vector φ(x) for an input x, or between
two feature vectors φ(x) and φ(y) (e.g., for computing a
logit in logistic regression, a distance for a given 2-norm, or
a polynomial kernel). In the spirit of [24], our goal is to
provide a generic methodology for constructing such feature
vectors from the semantic information that we extract from
the knowledge base for a given entity.

Let Y be a set of target labels (i.e., categories). In our
learning scenario we assume that the supervision is given
by a training sample S ⊆ E × Y. The goal is to find a
mapping φ : E → F from entities to feature vectors, so that
traditional machine learning methods, such as the above,
can be applied to the learning problem at hand.

Let e ∈ E be an entity that was recognized in the
underlying corpus C. Let q(e) be an ESPARQL query for
extracting semantic features of e. Let us further assume that
q(e) has k variables in the SELECT clause. Note that every
variable of q(e) takes values from E (where, as described
in Section 3, R ⊂ E). Furthermore, the substitution of
each variable in the SELECT clause is going to represent a
semantic feature for e. Hence, q can be viewed as a mapping
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Figure 2: Example of a taxonomic knowledge graph
with individuals f, g, h, i and types A, B, C, D, E.
The feature vectors of g and h are shown on the left-
hand side. Assuming that g and h are the entities
from the training sample, the set FS is given by the
union of all their superclasses (i.e., {A, B, C, D, E}),
as returned by the above query. A feature vector φ

has a dimension for each element from FS. For each
individual we set only those dimensions to 1 that
represent superclasses of that individual.

µ : E → 2E
k

. The elements of Ek index the dimensions of the

feature space F = {0, 1}E
k

. Although the cardinality of F
can be extremely large, in practice the features are derived
from the training sample, which typically leads to a much
smaller feature space. Hence, the effective feature space is
given by:

FS := {µ(e)|(e, ·) ∈ S}

Also note that often the domain of the knowledge base
from which features are extracted can be restricted to the
types of entities that are to be classified. For example if we
are to classify movies, we would also like to extract semantic
information from the knowledge base that is relevant and
specific to movies. In summary the steps that are carried out
by our framework in order to construct the feature vectors
are the following:

1. Based on the training corpus C and the knowledge base
K choose appropriate ESPARQL queries to extract
semantic information about the entities of C; the
queries can be run on K or a restricted subset of K
(see Section 3.2.2).

2. Unify the answer sets of the queries (for all entities
from C) to construct the set of semantic features that
indexes the dimensions of the effective feature space
FS .

3. The feature vector of an entity (which has the dimen-
sionality of FS) can be built in the obvious way, by
setting those dimensions which correspond to query
answers for that entity to 1.

In the following, we show by means of examples how such
feature vectors can be constructed and handled in practice.

3.2.1 Hypernymy-Based Feature Vectors
We start out by describing the simple case of constructing

taxonomic (i.e., hypernymy-based) features. Suppose we
have a knowledge base of individuals and all the classes they
belong to. A sample knowledge graph is depicted in Figure 2.
In order to extract all the hypernymy-based features for the
entity h, we can run the following ESPARQL query q(h):

y y

i = 1 …n i = 1 …n

 i(x) i(x)

Figure 3: Difference between discriminative (left)
and Naive Bayes model (right). The boxes represent
n-fold replication of the feature values φi(x) for a
given examples (x, y). Naive Bayes assumes inde-
pendence of feature values given the label and hence
leads to independent updates of weights, disre-
garding dependencies resulting from the ontological
feature construction. This problem is avoided by
discriminative models.

SELECT ?c
WHERE { h type subClass* ?c }

In Figure 2 we show how to construct hypernymy-based
feature vectors for given entities. It is important to note that
although these kinds of hypernymy-based vectors can be
used by any of the mentioned supervised learning methods,
they are best suited for methods that take the dependencies
between the features into account. For instance, the Naive
Bayes method does not consider these correlations and is
thus expected to deliver a degraded performance. This is
also shown empirically in our experimental section. It is
relatively straight-forward to see that the subsumption of
classes invalidates naive independence assumptions on the
corresponding features. For example, on the taxonomy of
Figure 2, a conditional independence assumption on the
features φA and φB corresponding to the classes A and B,
given a target label y ∈ Y, would lead to P (φA, φB|y) =
P (φB|φA, y)P (φA|y) = P (φB|y)P (φA|y). However P (φB =
1|φA = 1, y) = 1, hence P (φB|φA, y) = P (φB|y) if and
only if P (φB|y) = 1, which is in general not true. In
Figure 3, we highlight the difference between discriminative
models, which allow joint updates on weights, and Naive
Bayes models whose conditional independence assumption
on features leads to independent weight updates.

3.2.2 General Semantic Feature Vectors
Now consider the sample knowledge graph depicted in

Figure 1. Suppose that the movies occurring there (i.e.,
Nikita, Léon, Black Swan) are movies from our training
sample. Since in practice these kinds of knowledge bases can
be very large, one can restrict the effective feature space by
considering only types of entities that are relevant for the
classification task at hand. A key concept for achieving this
is given by the definition of a restricted entity domain.

Definition 3.4. Restricted Entity Domain. Let T ⊆
E be a set of types from a knowledge base K = (G, E ,R,Q).
For a class c ∈ T , let Dc denote the set of entities that can
be substituted for the variable ?x in the following ESPARQL
query on K:

SELECT ?x
WHERE { ?x subClass|(type subClass*) c }

The restricted entity domain DT for T is defined as DT =
⋃

c∈T
Dc.



European Movie, subClass

American Movie, subClass

Action Movie, hasGenre

Thriller Movie, hasGenre

French Movie, type

Hollywood Movie, type

Jean Reno, actedIn

Anne Parillaud, actedIn

Patrice Ledoux, produced

Luc Besson, directed

Scott Franklin, produced

Mark Heyman, directed

Natalie Portman, actedIn

;;

Figure 4: The elements in the union of the semantic
neighborhood information (i.e., neighboring entities
and relations) of the movies Léon, Nikita, and Black
Swan index the dimensions of the effective feature
space FS. Note that the higher semantic similarity
between the movies Léon and Nikita is also reflected
in the similarity between their semantic feature
vectors.

For example, for the knowledge graph of Figure 1, we
restrict the domain of entities to the types T={Movie,
Actor, Producer, Director}. We then denote by DT the
restricted entity domain of all the subclasses and individuals
of the classes in T .
With the restricted entity domain DT from the above

example, one possible way to construct the set FS is
by running two types of queries (1) a query to extract
hypernymy-based features, similarly to above, and (2) a
query to extract features about the semantic neighborhood
of that entity, e.g.,

SELECT ?e ?r
WHERE { (m ?r ?e) UNION (?e ?r m) }

The results to these queries are then unified to construct
feature vectors as depicted in Figure 4.
In practice, this kind of feature vectors will typically

be very sparse. For example, if we use movie genres to
classify movies, it is reasonable to expect every movie to
belong to only a few from a long list of genres. Hence, for
computational efficiency these vectors are implemented as
sparse vectors. This way the complexity of the inner product
is linear in the minimum number of dimensions set to 1 in
one of the two corresponding vectors.

4. EXPERIMENTAL EVALUATION
In this section we evaluate the effectiveness of se-

mantic features generated through the presented frame-
work. For our experiments we use YAGO [19], a general-
purpose knowledge base that was automatically constructed
from Wikipedia, WordNet and other semi-structured Web
sources. YAGO has been successfully used in many
knowledge-oriented systems, such as the YAGO-NAGA
project [21, 16], and most prominently in IBM’s Watson [22],
a system for answering Jeopardy questions.
In what follows, we empirically investigate two different

learning tasks, recommendation and text classification. We
first introduce the learning model that we have used and
then describe the learning tasks and the datasets. The
experimental results verify the hypothesis that semantic
features are beneficial to predictive accuracy.

4.1 The Learning Model
As described in the previous section, each input instance

(i.e., entity) x is formally represented by a sparse binary
vector φ(x) = (φ1(x), . . . , φn(x))

T ∈ FS .
In our model, the importance of the features in the vector

φ(x) is represented by a weight vector w = (w1, . . . , wn),
where the component wi reflects the importance of the fea-
ture φi(x). The model we use is a generalized linear Bayesian
probit model, similar to the ones used in Matchbox [23]
or AdPredictor [25]. This model computes a belief on the
weights wi, which is given by a Gaussian distribution with
mean µi and variance σ2

i . Hence, the state of the model is
uniquely identified by vectors of means and variances of the
weights, namely µ = (µ1, . . . , µn) and σ2 = (σ2

1 . . . σ
2
n). If

we knew the real values of the weights wi, we could compute
a score s(x) =

∑n

i=1 wiφi(x), which in turn could be used to
derive the probability of a target label y ∈ Y given the score
s(x), i.e., P (y|s(x)). The probability of a weight is given by:

p(w) =
∏

i

N (wi;µi, σ
2
i )

Since in our model the weights wi are represented as Gaus-
sian variables, the score s(x) is represented as a Gaussian
random variable as well:

p(s|w, x) = N

(

s;

n
∑

i=1

φi(x)µi,

n
∑

i=1

φi(x)σ
2
i

)

Finally, one can model the probability of label y as a probit
function:

P (y | s) = Φ

(

ys

β

)

with noise variance β2, where Φ (t) =
∫ t

−∞
N (v; 0, 1)dv. For

the update equations in such a model we refer the reader
to [25].

Such a model has several advantages:

1. By jointly updating the beliefs on the weights of
the features, it can capture and exploit dependencies
between features. As discussed in Section 3.2.1, this
is expected to yield a better performance than mod-
els that treat parameters independently (e.g., Naive
Bayes) in the presence of hierarchical hypernymy-
based features. This aspect is empirically demon-
strated in our experiments.

2. As shown by [23, 25], the model can deal with large
sparse vectors. Furthermore, the learning can be
carried out in an incremental fashion, as in an online
setting, which is important for practical concerns.

3. Finally, the above model can handle different feedback
types, including absolute, binary, and ordinal [23].
This flexibility allows us to apply it to various learning
tasks.

4.2 Test Case: Movie Feedback Prediction

4.2.1 The Task
The task consists in predicting the feedback that a user

will give on a movie. We use the generalized linear probit
model from above with user and movie IDs as basic features,
and add semantic features on top. Note that this task
is simpler than state-of-the-art (i.e., collaborative-filtering-
style) recommendation, where based on a user-movie feed-
back matrix, user and movie affinities are estimated [26, 23].



These affinities can be used to estimate the probability of
a movie being liked by a user. However, together with the
probit model, the task we consider shifts the focus on the
benefits of the different feature types.
The really interesting cases for this kind of feedback

prediction are those for which there are very few users
and movies in the training set. This is similar in spirit to
recommendation scenarios in which the feedback of users on
movies is very sparse, or in which there is no feedback at all.
For example, usually users are interested in the most recent
movies; for these, however, there are hardly any feedback
labels, which makes the recommendation task very difficult.
We refer to this problem as the cold-start problem.
With this in mind, in our experiments, we investigate

the question whether the semantic features (for movies)
generated by the proposed framework can improve the
prediction accuracy.

4.2.2 The MovieLens Dataset
MovieLens is a commonly used movie recommendation

dataset5. It contains 1,000,206 ratings of 3,952 movies by
6,040 users. Ratings are on an ordinal scale from 1 to 5. The
dataset also provides some meta data including information
about movies (e.g., cast, genre, etc.). As YAGO provides
more comprehensive cast, genre and type information for
movies, and to increase comparability, in our experiments,
we neglect the meta data provided by MovieLens. Instead
we use our framework to construct semantic features from
YAGO. This is done by exploiting the movie titles provided
by MovieLens. For a given movie title, a great deal
of information can be retrieved from YAGO, such as its
budget, release date, cast, genres, box-office information,
etc. However, for the sake of a clear message, we only select
the features regarding a movie’s cast and type. For example,
for the movie Black Swan, the following query

SELECT ?x
WHERE { ?x actedIn Black_Swan }

returns entities such as Natalie Portman, Mila Kunis, Vin-
cent Cassel, etc. Similarly, the query

SELECT ?x
WHERE { Black_Swan hasGenre|(type subClass*) ?x }

returns types and genres such as Drama_Movie, Thriller_Movie,
Tragedy_Movie, Ballet_Movie, American_Movie, etc.

4.2.3 Experimental Results
For this experiment we consider two settings: (1) no

semantic features are used; instead the model learns the bias
of a user towards a movie by using user and movie IDs as
features, (2) in addition, for movies, the model uses semantic
features extracted from YAGO.
As expected, the semantic features provide better de-

scriptions of the movies and are valuable in the learning
process, especially in the case of very sparse feedback. In
order to measure the prediction accuracy in such cold-start
situations, we adopt the methodology of [13] and [23]. We
divide the movies into two sets according to the release
dates: a training set containing 50% of the movies and a test
set containing the rest with newer release dates. First the
linear probit model is trained on all ratings for the movies
in the training set by taking the users who have rated those

5http://www.grouplens.org/node/73
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Figure 5: Mean absolute error (MAE) difference
between two settings, with and without semantic
features, for different values of L. It is important to
note that these MAE results for semantic features
are comparable to those of [26], which is a state-
of-the-art recommendation system based on collab-
orative filtering. The MAE values of [26] range
from 0.71 to 0.69, for L = 5% to L = 75% (see
also [23]), whereas the values of the probit model
with semantic features range from 0.74 to 0.69, for
L = 5% to L = 50%. This demonstrates the benefit
of semantic features in combination with the linear
probit model.

movies into account. Then, for each movie in the test set,
we train the model further on a random subset L of its
ratings, for L = 0% to 50%. We use the model to predict
the rest of the ratings for that movie. Finally we report
the mean absolute error (MAE), |r̂i − ri|, where ri is the
true rating and r̂i is the predicted rating. The experiments
are repeated 10 times and the average results, together
with corresponding standard derivations are summarized in
Figure 5.

As expected, the improvement achieved by the semantic
features is remarkable, especially when the ratings of a movie
have not been largely revealed. For these cases the semantic
features yield an improvement of almost 10% over the basic
features. Such effectiveness, when dealing with the cold-
start problem, is of particular interest for recommendation,
as the service providers often experience the problem that
users abandon their system and lose interest in returning due
to the low quality of initial recommendations. We should
also notice that the advantages of the semantic features
start to become negligible when more and more ratings
of a movie are observed. Finally, let us remark that the
framework we propose has not reached its full potential yet.
While there could be other meaningful semantic features
for movie recommendation, we have only used the cast and
type information. We hypothesize that semantic features for
users could further improve the performance of the probit
model. Furthermore, YAGO is rather a general-purpose
knowledge base; better performance is expected when a
more domain-specific knowledge base is used.

4.3 Tweet Classification

4.3.1 The Task
The classification task considered in this section is multi-

label classification of tweets. More specifically, the goal
is to assign the tweets to one or more of the nine



class #instance proportion
Business/Finance (BF) 2182 9.56%
Entertainment (E) 4235 18.56%
Lifestyle (LS) 4085 17.90%
Politics (P) 1199 5.25%
Science/Environment (SE) 789 3.45%
Sport (S) 1145 5.01%
Technology (T) 1880 8.23%
World Events (WE) 2122 9.30%
Other/Miscellaneous (OM) 12838 56.26%

Table 1: Statistics of the tweet classification dataset.

following categories: Business/Finance (BF), Entertain-
ment (E), Lifestyle (LS), Politics (P), Science/Environment
(SE), Sport (S), Technology (T), World Events (WE),
Other/Miscellaneous (OM).
The problem with this task is that (since a tweet is

restricted to 140 characters) tweets contain very few words,
and many of those are often non-informative, especially
when describing status updates. Moreover many tweets
may contain words that have never been observed before
(representing entities, such as new companies, products,
upcoming celebrities, etc.). Semantic features for the
entities recognized in the tweets can help mitigate such
sparsity issues.

4.3.2 The Dataset
For a subset of tweets from the Twitter firehose, the

categorizations were obtained using Amazon Mechanical
Turk6, and the results were manually verified by researchers
from our lab. This dataset was collected and categorized for
a personalized news service. For our experiments, a subset
of the original dataset was selected, which contains 22,816
tweets with their class information. Table 2 shows three
typical tweets from our training corpus. Some statistics of
the dataset used in the experiments are shown in Table 1.
The sum of proportions is larger than 100%, since one

tweet can simultaneously belong to more than one category.
In this corpus the positive classes are often very sparse.
Especially, the distribution of the classes is very unbalanced.
For example in our dataset more than half of the instances
belong to the category Other/Miscellaneous, while only less
than 5% of them belong to Science/Environment. This is an-
other reason (in addition to those presented in Section 4.3.1)
why this tweet classification task is very challenging.
Conventional features in text classification are bag-of-

words features, which can be extracted directly from the
tweets. To obtain semantic features, we first apply an
HMM-based entity recognition algorithm to locate terms
which correspond to possible entities in a tweet. Then, the
detected terms are mapped to the most likely entities in
the YAGO knowledge base. This is done by means of a co-
occurrence-based heuristics that exploits the YAGO means
relation7. Once the entities have been recognized as YAGO
entities, we use our framework to retrieve semantic features
from YAGO. For example, by processing the first tweet in
Table 2, Bush is recognized as an entity and is mapped
by the above heuristics with high confidence to the YAGO
entity George W. Bush. In this set of experiments we have
used queries of the following kind:

6http://www.mturk.com/
7YAGO relates terms to an entity through the means
relation if the terms refer to that entity.

governors of texas
harvard business school alumni
harvard university alumni
phillips academy alumni
presidents of the united states
texas republicans
time magazine persons of year
united states air force officers
yale university alumni

businessperson
president
person
politician
republican
scholar
serviceman
skilled worker
worker
corporate executive
executive
governor
leader
military officer
administrator
alumnus

Table 3: Some sample features obtained for the
YAGO entity George W. Bush. Left: neighboring
entities; right: hypernyms.

SELECT ?x
WHERE { (George_W._Bush ?r ?x) UNION

(?x ?r George_W._Bush) }

The above query retrieves all entities that are neighbors of
George W. Bush from the knowledge base. For more general
features, we make use of the YAGO type and subclass
hierarchy and retrieve all hypernyms with the following
query:

SELECT ?x
WHERE { George_W._Bush type subClass* ?x }

Some of the resulting semantic features are shown in Table 3.

4.3.3 Evaluated Learning Models
We evaluate the probit model on different feature settings

for bag-of-words and semantic features; for the semantic
features we look at the influence of hypernymy-based fea-
tures. Because of their hierarchical and inclusive nature
(e.g., a president is always a person), a naive independence
assumption is in general invalid. To verify the hypothesis
that the generalized linear probit model outperforms learn-
ing models with naive independence assumptions on these
kinds of semantic features, we include the Naive Bayes model
in our comparison. Finally, we compare the following five
settings:

SH: probit model with bag-of-words and semantic features
including hypernyms.

SnH: probit model with bag-of-words and semantic features
excluding hypernyms.

BOW: probit model with only bag-of-word features.

NBSH: Naive Bayes with bag-of-words and semantic fea-
tures including hypernyms.

NBBOW: Naive Bayes with only bag-of-word features.

The tests are carried out in a 10-fold cross validation. For
each of the nine classes in the dataset, each learning model is
trained and tested independently (often referred to as binary
relevance by the multi-label learning community [12]). The



tweet BF E LS P SE S T WE OM
Obama blames Bush for all of his misdeeds and then takes
credit for the successful war in Iraq http://is.gd/e0iVM
(via @PennyStarrDC)

0 0 0 1 0 0 0 1 0

A Modern Approach to an Ancient Game: The story
behind The Path of Go http://bit.ly/g04KtA

0 0 0 0 1 0 1 0 0

@alex Good morning! How was the trip? 0 0 0 0 0 0 0 0 1

Table 2: Three typical training instances in tweet classification with associated labels.

predictions are evaluated with negative log-likelihood (NLL)
and area under the ROC curve (AUC):

NLL = − (yi log(h(xi)) + (1− yi) log(1− h(xi))) ,

AUC =
1

|P | |N |

∑

xi∈P

∑

xj∈N

ω(h(xi)− h(xj)),

where yi ∈ {0, 1} is the true class, and h(xi) ∈ [0, 1] is
the the prediction of the method. P and N are the sets of
positive and negative instances, respectively. ω(z) is defined
as:

ω(z) =











1 if z > 0,

0.5 if z = 0,

0 if z < 0.

While NLL is a commonly used classification loss, AUC
measures the learner’s ranking performance. When we
randomly choose a positive instance and a negative one,
AUC corresponds to the probability that the method ranks
the positive instance ahead of the negative one.

4.3.4 Results
The results for the above settings, based on the NLL scores

and AUC, are shown in Table 4 and Table 5. In both tables,
the Friedman test shows a significant difference among these
settings at α-level 0.1 [14].
Comparing the different settings for the probit model, the

semantic features improve upon the bag-of-words features.
For this learning task, however, it seems that hypernymy-
based features are not very informative. Note that since
the hypernymy information in YAGO is largely based on
WordNet, our observations are consistent with the those
of [1].
The performance across the different classes varies con-

siderably. SnH is able to boost the performance for most
classes. But for some classes, such as Technology and
Politics, it seems very hard to improve. The tweets related
to these topics are often about the latest developments and
trends, and the recognized entities are not well-covered in
YAGO. The performance of the Naive Bayes method is poor.
Since the predictions of the Naive Bayes method are not
well-calibrated and tend toward extreme values, the method
suffers considerably in terms of NLL score. Furthermore,
the Naive Bayes method fails to handle numerous correlated
features as we expected. NBSH gives the worst results in our
test.

5. CONCLUSION
Our work aims at bridging the gap between machine

learning and semantic technologies. Along these lines, we
presented a modular framework for automatically construct-
ing semantic features from structured knowledge. While
these features can be used with various learning algorithms,

their hierarchical dependencies can be best exploited by
learning methods that can capture these dependencies. Our
experiments on movie recommendation and tweet classi-
fication give evidence for the improvement of predictive
accuracy, especially in cold-start situations, when the data
is sparse. Further improvement is conceivable if more
accurate and more domain-specific knowledge bases are
used. Therefore, we believe that future advances in the area
of information extraction and knowledge base construction
will pave the way for techniques such as the ones proposed
in this paper.
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