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Abstract

Evaluating production-level retrieval systems
at scale is a crucial yet challenging task due
to the limited availability of a large pool of
well-trained human annotators. Large Lan-
guage Models (LLMs) have the potential to
address this scaling issue and offer a viable
alternative to humans for the bulk of annota-
tion tasks. In this paper, we propose a frame-
work for assessing the product search engines
in a large-scale e-commerce setting, leveraging
Multimodal LLMs for (i) generating tailored
annotation guidelines for individual queries,
and (ii) conducting the subsequent annotation
task. Our method, validated through deploy-
ment on a large e-commerce platform, demon-
strates comparable quality to human annota-
tions, significantly reduces time and cost, facil-
itates rapid problem discovery, and provides an
effective solution for production-level quality
control at scale.

1 Introduction

Search functionality is a fundamental component
of e-commerce platforms, with the objective of
finding the most relevant products in a dynamic
product database. Customers using search often ex-
hibit a higher intent to find specific products (Moe,
2003), leading to greater engagement and conver-
sion rates. However, they may struggle to articulate
their needs in a search query. Even if they do ex-
press their intent clearly, information retrieval (IR)
systems might fail to interpret it correctly, resulting
in irrelevant search results (Wang and Na, 2024).
Evaluating product retrieval systems on a large
scale in a multilingual setting and for a diverse
set of customer queries is an intricate but essential
task for maintaining a high-quality user experience
and driving business success. A prerequisite for
this evaluation is the availability of a large enough
pool of query-product relevance labels (Voorhees,
2001; Halvey et al., 2015), which indicate whether
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Figure 1: Our proposed framework works by extract-
ing a query-product pair from our search query-click
logs (1). The query (e.g. black sneakers) is then passed
on to the LLM generator (2). The LLM generator
creates specific annotation instructions for the given
query. The query-specific annotation guidelines and
the query-product pair (e.g. black sneakers and the
retrieved product) are provided as input to the LLM
annotator (3). Lastly, the annotated query-product pair
is forwarded to the search engine evaluation module (4).

aretrieved product is semantically relevant to the
query. Semantic relevance depends solely on the
query and the product, excluding other contextual
factors such as personal customer preferences.

Creating annotation guidelines that codify what
is semantically relevant is a complex task (Spark-
Jones, 1975). It requires describing the guidelines
in a digestible, concise, yet precise manner, as well
as curating a set of illustrative examples of varying
difficulty. Even with well-defined guidelines and
well-trained human annotators, manual annotation
is slow and costly.

The advent of crowd-sourcing platforms has in-
creased scalability (Blanco et al., 2011; Alonso and
Mizzaro, 2012; Lease and Yilmaz, 2013; Marcus
et al., 2015; Chen et al., 2016), allowing for a trade-
off between speed and cost. However, increasing
the number of annotators can lead to inconsisten-
cies, as even the same annotator may provide con-
tradictory annotations for the same query-product
pair, let alone multiple annotators. Consistency can
be improved by using more annotators per pair (see,



e.g., Ferrante et al. (2017)), but this results in in-
creased cost. In large e-commerce systems, the vol-
ume of data that needs to be annotated leads to pro-
hibitively high costs when using crowd-sourcing
platforms that rely on human annotators.

While the rate of manual relevance judgement
varies depending on the task (Voorhees, 2001;
Sanderson et al., 2010; Chen et al., 2022; Soviero
et al., 2024), in our use case, we estimate a through-
put of 2-3 query-product pairs per minute. As an ex-
ample, 50,000 queries' and 20 products per query
results in one million query-product pairs, which
takes 5,500-8,500 hours of human labour, assuming
one annotation per pair. Moreover, evaluation is not
a one-off practice; ideally, companies continuously
assess their search engines to ensure effectiveness
over time.

The sheer volume of required annotations in mul-
tiple languages, along with the need for continu-
ous evaluation, makes human-generated relevance
judgements the primary bottleneck in creating prod-
uct retrieval evaluation datasets. To overcome these
challenges, there has been growing interest in lever-
aging LLMs (Faggioli et al., 2023; Thomas et al.,
2023; Soviero et al., 2024; Rahmani et al., 2024,
Upadhyay et al., 2024; Bergum, 2024).

In this study, we propose a framework that lever-
ages the capabilities of Multimodal Large Lan-
guage Models (MLLMs) for assessing the rele-
vance of query-product pairs (Fig. 1). Our method
combines the strengths of LLMs and MLLMS in un-
derstanding natural language queries across various
languages and processing both textual and visual
features of products. Unlike traditional per-task
annotation guidelines, such as those discussed by
Soviero et al. (2024), we employ LLMs to generate
annotation guidelines specific to each query. Addi-
tionally, our pipeline’s modular design allows for
caching and parallel processing, which is crucial
for scaling up to larger systems. This framework
has enabled daily evaluations of our product re-
trieval systems. It has also facilitated the compari-
son of different search models, increasing our confi-
dence in offline evaluations and complementing our
online evaluation techniques, such as A/B testing
and other controlled online experiments (Kohavi
et al., 2009). Moreover, we have used the relevance
assessments’ outputs to train, evaluate and analyse
other components of our search and ranking sys-
tems.

'A modest number for the evaluation of large IR systems.

We furthermore show that while human-human and
human-LLM agreement scores are on par with each
other, we find that humans and LLMs tend to make
very different types of annotation errors. Our find-
ings suggest that LLMs are very effective for the
bulk work of annotations whereas human expertise
is better leveraged for more complex cases.
In summary, our contributions are as follows:

* We introduce a multimodal LLM-based eval-
uation framework for large-scale product re-
trieval systems. We propose query-level anno-
tation guidelines and utilise multimodal inputs
(text and images) for relevance assessment.

* We evaluate the performance of our frame-
work against human annotations on real-world
production search queries in a multilingual set-
ting and analyse the different types of errors
that humans and LLMs tend to make.

* We demonstrate the cost-effectiveness and ef-
ficiency of our approach for conducting large-
scale evaluations. We also compare the perfor-
mance of different types of LLMs (Radford
et al., 2019; Brown et al., 2020; Achiam et al.,
2023) for relevance assessment.

2 Multimodal LL.M-based relevance
assessment

The setup of our method is depicted in Fig. 2. It is
designed to leverage the capabilities of (M)LLMs
for efficient evaluation of large-scale product
retrieval systems, and it consists of six main steps:
(1) For a given query and its context (e.g., selected
gender and market), an LLM generates a query
requirement list and a guery-specific annotation
guideline. The query requirement list captures the
relevant pieces of information in the user’s query
and their level of importance. For example, for the
query Nike red shoes, the query requirement list
includes the brand (Nike), colour (red) and product
category (shoe). The query-specific annotation
guideline is generated by the LLM based on the
query and its requirement list. It outlines criteria
for each predefined label (see Appendix A for a
detailed example). In our experiments, we defined
three relevance labels for a query-product pair:

“irrelevant”, “acceptable substitute” and “highly

relevant”.?

2See Appendix B for details.
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Figure 2: Our proposed Multimodal LLM-powered framework enables offline evaluation of large-scale product
retrieval systems and presents significant time and cost reductions compared to existing evaluation techniques. Refer
to Fig. 1 for an overview of the main steps in the framework, and consult the text for further details. The orange
rectangle indicates where a “one-step” Multimodal LLM (MLLM) could be utilised, instead of employing one
MLLM to create a textual description for image inputs (Step 4) followed by an LLM (Step 5a). In the one-step
MLLM, both textual descriptions and the product image are directly fed into the LLM annotator, along with query
requirements and query-specific annotation guidelines. The depiction of the pipeline is simplified for readability.

(2) The query and its context are sent to the
search engine, which retrieves a set of products.
For simplicity, we illustrate this process using a
single query-product pair. However, in practice, we
work with multiple query-product pairs and may
utilise two or more retrieval systems, particularly
when comparing their performance.

(3a,b) For each retrieved product, we have access
to its textual description and its associated image.

(4) Using MLLMSs and the product image, a visual
description in textual form is generated.

(5a,b) The combined textual and visual product
descriptions are sent to an LLM together with the
outputs of Step 1 (i.e., query requirement list and
query-specific annotation guideline).

(6) The LLM assigns a relevance score to the
query-product pair using a set of predefined labels.
In its simplest form, the output is a database with
one row for each (query, product, relevance
score).

In Steps 1 and 6, we utilise chain-of-thought (CoT)
prompting (Wei et al., 2022; Nye et al., 2021) to
enhance the quality of (M)LLM outputs and for
debugging. An example of the reasoning steps is
shown in Appendix A.

As illustrated with dashed lines in Fig. 2, all
outputs and intermediate steps are stored in a
database. This caching serves two key functions in
our pipeline. Firstly, it facilitates efficient retrieval
and reuse. When evaluating a new search engine

configuration (or a variation of existing ones), the
database is queried to retrieve relevant pieces of
information, including the query requirement list,
query-specific annotation guidance, textual and
visual product descriptions, and relevance scores.
We only compute the missing pieces of information.
Secondly, it ensures consistent evaluation across
different search engines, as intermediate steps
(such as query-specific annotation guidelines) are
computed only once and then used to evaluate
various search engines.

3 Experiments and Results

3.1 Dataset

Data collection. As a starting point for our data
collection, we used one year’s worth of production
search query traffic>. We then performed stratified
sampling along the following dimensions: a) search
engine, b) activated gender filter on the website, c)
query frequency, and d) query length in tokens.

Table 1: Dataset statistics.

Language | Unique | Unique | Avg. tokens | Unique
pairs | queries | per query | products

German 10,000 500 3.68 8,076

English ‘ 10,000 ‘ 500 ‘ 3.99 ‘ 8,652

3Our data collection process complies with the regulations
defined in the GDPR and other existing regulatory frameworks
around data privacy and safety in the European Union.



Table 2: Agreements between (M)LLM and the human annotator groups (i.e., Al and A2). We compare agreements
based on i) matching either A1 or A2 and ii) inter annotator agreement between human annotators (A1l vs. A2) and
between LLMs and the human majority vote. In the Al or A2 column, we use the same human majority vote to
measure the agreements for human annotators. Results are reported separately for English and German. For human
annotations, we report the total time and cost. We use GPT-4o in all steps of our LLM annotation pipeline (Fig. 2).
Refer to Table 3 for a more detailed comparison between human annotator groups (Al, A2, and tiebreaker) and

different versions of our LLM-powered framework.

Agreement with Inter Annotator
Annotator Al OR A2 (%) Agreement (%) Total time Cost
EN | DE EN | DE EN | DE | EN | DE
Al 76.6 75.9 60.2 60.5 3 weeks €15,000
A2 75.8 76.1 60.2 60.5 3 weeks €15,000
LLM-text 75.4 75.6 62.8 61.4 8min 7 min €70 €70
MLLM-text 76.6 77.0 64.3 63.1 12min 13 min | €92 €93
MLLM-multi 78.1 78.4 65.6 64.7 10 min 10 min | €72 €72
MLLM-multi 75.4 75.6 62.9 62.0 30 min 23 min | €155 €156
(gpt-4-turbo)
Without query-specific annotation guidance
LLM-text 71.2 (-4.2) 67.0(-8.6) | 57.6 (-5.2) 52.2(-9.2) | 7min 7 min €45 €45
MLLM-text 72.5(-4.1) 68.0(-9.0) | 58.7(-5.6) 53.4(-9.7) |11 min 1l min | €66 €67
MLLM-multi 74.1 (-4.0) 71.9 (-6.5) | 61.6 (-4.0) 59.9(-4.8) | 4 min 4 min €25 €24

After sampling and manual curation*, we ob-
tained 500 queries in German and English each.
For each query, we then used the existing search en-
gine to retrieve 20 products, selecting 15 products
from the top of the retrieved results and randomly
sampling the remaining 5 from rank 500 onwards.
This resulted in 10,000 unique query-product pairs
for German and English each. Table 1 outlines the
statistics of the collected dataset.

Data annotation. For data annotation, we con-
tracted an external agency to facilitate crowd-
sourcing annotations based on the guidelines we
provided.> Our requirements specified that only
native speakers (German and English, see Table 1)
annotate the data. Each query-product pair was
to be annotated by two human annotators, with an
additional third annotation as a tiebreaker in cases
where the two original annotators disagreed. The
data annotation process was done in three phases:
(i) a pilot phase to onboard annotators and resolve
outstanding loopholes and questions in the anno-
tation guidelines; (ii) the main annotation phase;
(iii) the tiebreaker phase.

In total, the data annotation process — from the
handover of the initial version of the annotation
guidelines by us to the final delivery of annotated
data by the external agency — took approximately 8§

“We manually checked all sampled queries to ensure we
cover a diverse and broad spectrum. For example, we would
manually replace yet another sneakers-related query with a
boots-related query of the same length.

5See Appendix B for an overview of our annotation guide-
lines.

weeks®, with roughly 3 weeks needed for complet-
ing the main annotation and tiebreaker phases. The
total cost of data annotation was €30,000.

3.2 LLM versus Human Annotators

Using our proposed framework, we assessed the rel-
evance quality of the 20,000 unique query-product
pairs. Table 2 summaries the results of our ex-
periments using few-shot prompting, where we in-
corporated examples into the system prompts of
the (M)LLMs. Here, we provided the LLMs with
example customer queries, their corresponding re-
quirement lists, and quality labels, but not complete
product descriptions or images.

Initially, we randomly sampled 100 examples from
the English dataset and examined the relevance
labels assigned by both LLMs and human annota-
tors. We used the results of this step to adjust the
few-shot examples in the system prompt.

We compare the performance of different ver-
sions of our pipeline with human annotations. In
Table 2, these versions are labelled as “LLM-text”,
“MLLM-text”, and “MLLM-multi”.

“LLM-text” is the simplest version where only prod-
uct descriptions in textual form are used, without
incorporating product images. In “MLLM-text’,
we employ a vision model to generate textual de-
scriptions of product images (Step 4 in the pipeline,
see Fig. 2). The generated textual description of
the product image is then concatenated with the

This excludes the effort needed to write the annotation
guidelines and to sample the query-product candidate pairs.



product description itself (Step 5a). “MLLM-multi”
utilises the same textual input as “LLM-text”, while
also incorporating the product image as an ad-
ditional input.” Comparing “MLLM-multi” and
“LLM-text” highlights the impact of multimodal
inputs on our task.
In all cases, the (M)LLM uses product information
(in different modalities, depending on the version),
query requirements, and query-specific annotation
guidance to assign relevance labels.
Overall, Table 2 shows that the agreement between
human annotators and LL.Ms is on par with that be-
tween human annotators, supporting the scalability
of LLLM annotation for production-level traffic.
Table 2 also shows the results of an ablation
study that removed the query-specific annotation
guideline (Step 1 in Fig. 2). The inclusion of
this guideline improved agreements by approxi-
mately 4-10%. More importantly, this component
in our framework is essential for enhancing the
interpretability and debugging of LLM-based deci-
sions. However, as expected, incorporating query-
specific annotation guidelines and chain-of-thought
reasoning increased the evaluation costs.
We also tested the impact of different (M)LLM ar-
chitectures in our pipeline.® The results shown in
Table 2 are based on “GPT-40” (OpenAl, 2024)
except for one row, labelled “MLLM-multi (gpt-4-
turbo)”. In the case of GPT-4 Turbo, the agreement
with human annotators consistently fell below that
of GPT-40, while its costs and evaluation times ex-
ceeded those of all other architectures.
In Table 4, we repeated the experiments using GPT-
3.5 Turbo. As expected, the results were signifi-
cantly worse compared to GPT-40 or GPT-4 Turbo.
However, the cost and time required for GPT-3.5
Turbo were lower than for the other architectures.

4 Discussion

Agreement between LLLM and human anno-
tators. The human-LLM agreements between
“MLLM-multi” and the human majority vote —
65.6% for EN and 64.7% for DE in Table 2 — are
in line with the human inter-annotator agreement,
which is 60.2% for EN and 60.5% for DE.

To better identify discrepancies between LLM
and human annotations, we focused our analysis on
hard disagreements between the two. We consider

’See the orange rectangle in Fig. 2 where both the textual
product description and its image are fed into an MLLM.

8Refer to Table 3 and 4 in Appendix C for the results of
similar experiments conducted with different LLM types.

a hard disagreement to be when, for example, the
LLM considers a product to be “highly relevant”
for the given query, whereas the human majority
judgement would be “irrelevant”, and vice versa.
In total, we found that approximately 15% of an-
notations’ in our dataset were hard disagreements.
For manual analysis, we sampled 20% of the hard
disagreements and found that in 50% of the cases,
the human annotation was wrong, in 31% the LLM
was wrong, and in 19% of cases, both the LLM and
the humans provided a wrong annotation.
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Figure 3: Distribution of errors between LLMs and
humans on hard disagreements (50% were due to human
errors, 31% LLM errors and in 19% both made an error).
The upper part (“Both errors™) focuses on errors that
either the LLM or humans could make. It highlights
that LLMs and humans make very different types of
errors. In addition, the lower part (“LLM errors”) shows
the distribution of errors that only an LLM would make.
Predominantly these are misunderstandings of a part of
the search query.

We further categorised the hard disagreements
into 9 error classes'’, and found LLMs and hu-
mans tend to make very different kinds of errors.
For example, as shown in Fig. 3, the main errors
made by the LLM are either being foo strict in their
judgement (e.g., considering a product as “irrele-
vant”, where “acceptable substitute” would have
been more appropriate), or misunderstanding a part
of the query (e.g., interpreting On Vacation in its
literal sense rather than the fashion brand). On
the other hand, humans would oftentimes be too
lenient when LLMs were too strict (e.g., consider-
ing a product as “highly relevant” when “accept-

92,971 out of 20,000 query-product pairs (=15%) had hard
disagreements between the LLM and human majority vote.

19See Appendix D for the definition of these classes and for
example errors we have observed.



able substitute” would have been more appropriate).
Furthermore, human annotations frequently exhib-
ited brand errors (e.g., considering a pair of Lee
jeans as “highly relevant” for a query requesting
Levi’s jeans), product errors (e.g., considering an
Adidas Samba sneaker as “highly relevant” for a
query requesting an Adidas Stan Smith sneaker),
or category errors (e.g., considering a pair of Nike
shirts as “highly relevant” for a query requesting
Nike shoes), which we barely ever observed for
LLMs. We hypothesise that the latter three kinds
of human errors are primarily due to annotation
fatigue as specifically these cases have been promi-
nently and unambiguously featured in the annota-
tion guidelines.

These findings suggest that LLMs might be a
more reliable source for the bulk of annotations,
freeing human labour to focus on trickier cases.!!
In the human-machine collaboration spectrum in-
troduced by Faggioli et al. (2023), our approach
can be classified as a “Human Verification” (or
human-in-the-loop) approach.

Subjective nature of relevance judgements.
We found that human disagreement was dominated
by two main factors, (i) human errors due to an-
notation fatigue as described above'?, and (ii) the
inherent subjective nature of the task. For the latter,
we attribute the source of disagreement to either
the ambiguity in the annotation guidelines (even
comprehensive guidelines cannot cover all possible
cases), or to the subjective judgement of the anno-
tator.!3 Ideally, the annotation guidelines should
make the task as objective as possible; however, in
practice, there is always a level of subjectivity.

Annotation time and cost. (M)LLMs are ap-
proximately 100 to 1,000 times cheaper than hu-
man annotators, and the time required to complete
all 20,000 annotations using (M)LLMs is signifi-
cantly smaller (around 20 minutes for (M)LLMs
compared to about 3 weeks for human annotators).
Note that several human annotators worked in each
group (i.e., “A1” and “A2” in Table 2), and the
total time reported in Table 2 is for annotating all
query-product pairs. This excludes the time spent

"This typically includes new trending terms or styles that
LLMs have not observed yet, but also ambiguous queries such
as old money or dark academia, that specify a fashion style.

2In fact we found that human-human hard disagreements,
also making up approx. 15% of the annotated data, were also
primarily due to brand errors, product errors and category
errors — the same types of errors that we also found when
comparing LLM and human hard disagreements.

3See Appendix E for examples.

on scoping and onboarding human annotators. For
(M)LLMs, the reported time excludes the pipeline
development time and only includes the actual an-
notation time.

We anticipate that both cost and time will de-
crease even further as LLMs and their APIs become
more efficient. Moreover, new approaches, such
as batch processing, can further reduce costs (e.g.,
OpenAl’s new batch processing is half the price
of non-batch queries'#). Indeed, in production, we
use batch processing to assess query-product pairs
across markets on a nightly basis.

Relevance assessment in production. High rel-
evance is a necessary, but not a sufficient condition,
for high customer engagement, as it is also deter-
mined by other factors, e.g. personal preferences,
product availability, and price expectations. In this
paper, we focus on semantic relevance, but in pro-
duction we rank the retrieved documents based on
various features to take into account both relevance
to the query and customers’ personal preferences.

Currently, we use the LLM-powered evaluation
framework presented in this paper in production
to continuously perform relevance assessments at
scale. We typically focus on monitoring the per-
formance of high-volume queries with our frame-
work. Additionally, we evaluate the retrieval per-
formance for low-performing queries. We iden-
tify such queries based on signals indicating low
relevance in top ranked results, such as low en-
gagement with the result set and high friction in
customer experience (e.g., a high reformulation
rate'®) or high exit rate. This approach enables us
to significantly reduce costs and to enhance cus-
tomer experience faster by prioritising the queries
that need the most attention and optimising our
resources accordingly.

5 Conclusion

Our novel evaluation method leveraging Multi-
modal LLMs demonstrates a highly efficient ap-
proach to assessing large-scale IR systems in prod-
uct retrieval. We introduce query-level annota-
tion guidelines for calibration and utilise the multi-
modal capabilities of foundation models to assess
the relevance of retrieved products for a query. Our

14https: //platform.openai.com/docs/guides/batch
(accessed on 2024-07-17)

5The reformulation rate is the percentage of queries that
are modified and resubmitted within the same search session,
indicating an initial failure to satisfy the user’s intent and a
subsequent attempt to refine the search.


https://platform.openai.com/docs/guides/batch

LLM-powered framework, combined with caching
and parallel processing, leads to significant reduc-
tions in both time and cost. The method’s scalabil-
ity, ability to handle multilingual queries and prod-
ucts, and support for continuous offline evaluations
are crucial for large IR systems operating in diverse
markets. Experimental results, validated against
20,000 human annotations, confirm the effective-
ness and efficiency of our approach. A detailed
analysis of human and (M)LLM annotations indi-
cates that (M)LLMs are a more reliable source for
relevance assessment in large-scale IR systems. We
are currently leveraging this framework in produc-
tion to continuously perform relevance assessments
at scale and maintain a high-quality user experience.
Additionally, we utilise its outputs to train, evalu-
ate, and analyse other components of our search
and ranking systems.

6 Ethics Statement

Our data collection process strictly adheres to
the General Data Protection Regulation (GDPR)
and other relevant data privacy and safety laws
within the European Union. We ensure that all
data utilised, including human evaluation data, is
anonymised to safeguard against the disclosure of
any personally identifiable information.

We do not suggest replacing human annotators
with large language models (LLMs). Instead, we
focus on leveraging the strengths of both. Our anal-
ysis indicates that human annotators may make
errors due to annotation fatigue or lack of do-
main knowledge—errors not observed with LLMs.
Therefore, we recommend using LLMs for bulk
annotation work while reserving human expertise
for more complex cases.

We are committed to advancing responsible and
unbiased Al technologies and welcome any in-
quiries regarding the ethical aspects of our work.
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A Multimodal LLM-powered relevance
assessment: evaluation steps for an
example query

Fig. 4 illustrates the various steps of our evaluation
framework using the example query women’s long
sleeve t-shirt with green stripes.

Given this query, the LLM infers its require-
ments and their importance (Step 1 of our frame-
work, refer to Fig. 2). The outputs of this step
for the example query are detailed in the para-
graph “Query requirements and their importance”
in Fig. 4b. As shown in Fig. 4b, the LLM has
inferred four query requirements: “assortment cat-
egory”, “sleeve length”, “product type” and “pat-
tern”. An importance level is also assigned to each
requirement (in this case, the first three require-
ments are “must_have”, and the last one is “approx-
imate_is_okay”). Additionally, the LLM provides
a reason for each requirement and its importance
(not shown here). The LLM also translates the
query into English and assigns a “specificity” level,
as shown in Fig. 4b.

In panel (c), the translated query, its specificity,
its requirements and their importance are used to
create query-specific annotation guidelines. The
three quality labels (i.e., “irrelevant”, “accept-
able_substitute” and “highly_relevant”) are pre-
defined. However, the guidance for each label is
generated by the LLM. The LLM provides clear
and detailed descriptions for each relevance la-
bel, tailored to the given query. In the ablation
study of Table 2, we assessed the impact of query-
specific annotation guidelines on our method’s
performance. To do this, we replaced the query-
specific guidelines with a generic one, as shown in
Fig. 5.

In Fig. 4d, an example product, its attributes, and
its image are shown. These attributes are read
from an existing database and are not generated
by the LLM, except for the “visual description of
packshot”, highlighted by a red rectangle which is
generated by a vision model (e.g., GPT-40). The
(M)LLM uses the query-specific annotation guid-
ance in panel (c), along with the extracted and gen-
erated product attributes in panel (d), to assign a
relevance label. In this example, as shown in panel
(e), the label is “highly_relevant”, and the reason-
ing (aka the chain-of-thought step) of the (M)LLM
is shown for inspection and debugging purposes.

B Human Annotation Guidelines

For human annotators, we focused on three classes:

* highly relevant: The retrieved product satis-
fies all the specifications in the query.

* acceptable substitute: The item fulfils some,
but not all aspects of the query and the re-
trieved item can be used as a functional sub-
stitute.

* irrelevant: A central aspect of the query is not
fulfilled (e.g. wrong brand, wrong category,
wrong product).

We decided against a more granular annotation
scale to reduce mental load on annotators and to
(hopefully) harness higher agreement scores among
annotators.

Our annotation guidelines also reflect require-
ments that are more business-specific rather than
content-specific. For example, annotators have
been explicitly briefed that if a query requests a
specific brand (e.g. Polo Ralph Lauren jumpers),
any retrieved item that is not from the requested
brand is to be regarded as “irrelevant”.

Another business-specific rule was that if a query
requests a particular product (e.g. The North Face
1996 retro nuptse jacket), any retrieved product that
is not that particular type of The North Face jacket
is to be regarded as “irrelevant”.

Despite the explicit mentions of these rules, nu-
merous provided examples across product cate-
gories, and an additional briefing session after the
annotation pilot phase, brand and product errors
were among the most commonly made human an-
notation errors.

C Experiments with LLM types:
GPT-3.5, GPT-4, and GPT-40

In this section, we compare human annotator
groups with (M)LLMs using different architectures.
The results in Table 3 are primarily based on “GPT-
40” (OpenAl, 2024), except for the row labelled
“MLLM-multi (gpt-4-turbo)”. For GPT-4 Turbo,
the agreement with human annotators was consis-
tently lower than that of GPT-40, while its costs
and evaluation times exceeded those of all other
architectures.

In Table 4, we repeated the experiments using
GPT-3.5 Turbo. As expected, its results were sig-
nificantly worse compared to GPT-40 and GPT-



4 Turbo, but its cost and time requirements were
lower than those of the other architectures.

D LLM versus Human error types

After manually inspecting a sample of hard dis-
agreements'®, we defined the following 9 error
classes, some of which are applicable to LLMs
and humans, and some to LLMs only:

1. Brand error. When a user specifies a brand
name in the search query, e.g. Lee jeans, Nike
sneakers, or Mascara dresses, we consider any re-
trieved item as “irrelevant” if it is not from the
requested brand. This is independent of whether
the retrieved item would be visually similar to the
requested one. This requirement has been covered
in the LLM prompt as well as the human annota-
tion guidelines. Predominantly, this error has been
made by human annotators (see Fig. 3).

2. Product error. When a user specifies a spe-
cific product in the search query, e.g. Levis 501 or
Adidas Stan Smith, we consider any retrieved item
that is not exactly the requested item as “irrelevant”.
This requirement has been covered in the LLM
prompt as well as the human annotation guidelines.
Predominantly, this error has been made by human
annotators (see Fig. 3).

3. Too strict. This error happened when a prod-
uct was judged as “irrelevant” for a given query
despite fulfilling almost all the requirements of the
query. This error has been predominantly made
by LLMs (see Fig. 3), for example when a query
requested black Levis jeans with holes, but the re-
trieved product was a grey pair of Levis jeans with
holes, the LLM would typically annotate the re-
trieved products as “irrelevant”.

4. Too lenient. This error happened when a
product was judged as “highly relevant” for a given
query, despite not fulfilling all requirements that
the query specified. This error has been exclusively
made by human annotators (see Fig. 3), for ex-
ample where for a query like Nike Air Force One
high-top, humans annotated a Nike Air Force One
low-top sneaker as “highly relevant”.

5. Category error. When a user specifies the
category of a fashion item in the search query,
e.g. dress, sneakers, belts, we consider any re-
trieved item that does not match the category as
“irrelevant”. This requirement has been covered

16We consider a hard disagreement to be when, for example,
the LLM considers a product to be “highly relevant” for a
given query, whereas the human majority judgement would be
“irrelevant”, and vice versa. Refer to Section 4 for details.

in the LLM prompt as well as the human annota-
tion guidelines. Predominantly, this error has been
made by human annotators (see Fig. 3).

6. LLM hallucination error. We rarely ob-
served hallucinations as a source of error. Inter-
estingly, when hallucinations did occur, they were
exclusively related to size queries, such as ¢-shirt
xxl. In such cases, the LLM would hallucinate var-
ious available sizes for a given retrieved product
and make a relevancy judgement on the basis of its
hallucinations.

7. LLM translation error. Since our dataset
contained German and English queries, the LLM
was prompted to translate a German query into En-
glish before starting its reasoning process. This
sometimes resulted in translation errors that subse-
quently led to incorrect relevancy judgements. For
example, it happened for queries containing the
term Unterziehhose, meaning some sports leggings
one can wear underneath sports shorts, which the
LLM incorrectly translated as underpants.

8. LLM understanding error. This error cat-
egory is somewhat broader. We would categorise
an LLM error as understanding error, whenever
the LLM misinterpreted a part of the query or the
product. For example, this error occurred when
the LLM would misinterpret a query for Nike Tech
Fleece to be focused on the material whereas Tech
Fleece typically refers to a particular series of Nike
sports clothing. Another example is the misinter-
pretation of brand names, such as for On Vaca-
tion (interpreted in its literal meaning), or for Evry
Jewels (where Evry would be interpreted to mean
Every). To our amusement during error analysis,
we also observed a brand misinterpretation for the
query miniature winter jackets for kids, where Mini
A Ture is a kids’ clothing brand. The LLM inter-
preted miniature in its literal sense and reasoning
that /... ] the sizes available are for kids, which fits
the 'miniature’ requirement.

9. LLM vision error. Some of our models in-
cluded the visual interpretation of a product image
in its relevancy assessment.!” We only rarely ob-
served LLM vision errors. If they did occur, it was
typically when the product image was taken at a
slight angle—for instance, with a pair of sneak-
ers where the LLM erroneously identified them
as high-top due to the photo angle. Errors were
also more likely when the image included a human
model, which acted as a distractor.

""MLLM-text in Tables 2, 3 and 4.



E Subjective Nature of Relevance
Judgements

The difficulty in judging query-product relevancy
can vary widely. For example, for queries such as
Nike Air Max 95 or Paul Smith long sleeve polo
shirt, there is barely any room for subjectivity —
the retrieved products either are matches, or they
are not. And indeed, this is reflected in the human-
human inter-annotator agreement (95% and 82%,
respectively) and the LLM-human agreement (98%
and 89%, respectively), for these two examples.
However, there are numerous queries that are
much more open to subjective judgement. One
such example is the query smart casual shoes,
where the human-human agreement was only 12%
and the LLM-human agreement was 24%. The
range of suitable products for this query spans vari-
ous types of shoes, and whether or not a particular
shoe can be categorised as smart casual is typi-
cally not included in the product data. In these
cases, humans and LLMs would draw on their
prior knowledge for making a relevance judgement.
LLMs would generally be a stricter judge and con-
sider anything that resembles a sneaker too closely,
or is not in a shade of black or brown, as “irrele-
vant”. Human strictness for relevancy judgements
for this query varied between the very formal and
the (loosely speaking) anything goes extremes.



You are an expert query-SKU relevance evaluator. You will be provided with a sku description. Your task is to evaluatel
Ihow closely the SKU matches the search query.

I I
| Search query: women's long sleeve t-shirt with green stripes a |

Query translated: women's long sleeve t-shirt with green stripes
Query specificity: specific
Query requirements and their importance:

* assortment category: women's | importance: must_have
* sleeve length: long sleeve | importance: must_have

* product type: t-shirt | importance: must_have b
* pattern: green stripes | importance: approximate_is_okay

Annotation guidelines:

You can select one of the following relevance quality labels:

* irrelevant: ltems that are not women's clothing, not t-shirts, or do not have long sleeves. For example, men's
t-shirts, women's short sleeve t-shirts, or women's t-shirts without any stripes.

* acceptable substitute: Women's long sleeve t-shirts with a similar pattern, such as different shades of green

stripes or a slightly different stripe pattern.
*highly relevant: Women's long sleeve t-shirts with green stripes that match the query exactly. C

Product information: ( d )

[Article SKU]

| * Description (from product page):

— name: [Brand Name] | color: evergreen | gender group: Women | age group: Adult |
silhouette code: t_shirt_top | product group: clothing | category tag: Long sleeved top,
Langarmshirt, Long sleeved top | fashion tags: shirt, knits, top, long sleeves, clothing |

| material: rib | upper material: elastane, cotton | shape: straight | fit taxonomy: Regular Fit |

| pattern: striped | size: L, M, S, XL, XS, XXL | occasion: leisure | neckline: crew neck |
clothing length: normal | sleeve length option: long | fabric definition: knitted |

Visual description of packshot: This long-sleeved top features a classic horizontal stripe
pattern in alternating white and green. The fabric has a ribbed texture, giving it a subtle,
snug fit that accentuates the wearer's shape. The neckline is a simple, rounded crew neck,
contributing to a timeless and versatile look. Its overall design is casual yet stylish, perfect

for everyday wear.; Vision model

Relevance assessment: ( )

Relevance label: 'highly_relevant'

Reasoning (chain-of-thought): The SKU description provided is for a women's long-sleeved top, which matches the
'women's' and 'long sleeve' requirements. The product type is described as a 't-shirt top' and 'long sleeved top," which
aligns with the 't-shirt' requirement. The pattern is described as 'striped' with alternating white and green, which matches
the 'green stripes' requirement. Therefore, all must-have attributes and the approximate attribute are met.

Figure 4: Evaluation steps for an example query women’s long sleeve t-shirt with green stripes. The entire content
displayed in this figure is generated by Multimodal LLMs, except for panel (a), the packshot in panel (d), and the
black dashed rectangle also in panel (d). However, within the attributes shown in panel (d), the “visual description
of packshot”, highlighted by a red rectangle, is also generated by a vision model (specifically, GPT-40 was used in
this instance). Please refer to the text for further details. (In this example, we have removed the brand name from
the product description and the tag on the packshot.).



Annotation guidelines:

You can select one of the following relevance quality labels:

*irrelevant: the item is completely irrelevant to the query.

* acceptable substitute: Not all query requirements are fulfilled but the customer could still be okay with seeing
this result.

*highly relevant: the item is completely relevant to the query.

Figure 5: A generic annotation guideline for the task of query-product relevance assessment. Compare this to the
query-specific annotation guidelines in panel (c) of Fig. 4.

Table 3: Agreements between (M)LLM and the human annotator groups (i.e., Al, A2 and tiebreaker). Similar
to Table 2, but with additional columns showing the agreements of A1, A2, and the tiebreaker groups with other
annotators. We report agreements separately for English and German. For human annotations, we report the total
time and cost. We use GPT-4o0 in all steps of our LLM annotation pipeline (Fig. 2).

Agr t with |Agr t with| Agr t with| Agreement with | Inter Annotator
Annotator Al OR A2 (%) Al (%) A2 (%) Tiebreaker (%) | Agreement (%) Total time Cost

EN [ DE EN | DE EN | DE EN [ DE EN [ DE EN | DE EN | DE
Al 76.6 75.9 - - 60.2 60.5 40.0 37.5 60.2 60.5 3 weeks €15,000
A2 75.8 76.1 60.2 60.5 - - 37.5 36.6 60.2 60.5 3 weeks €15,000
LLM-text 75.4 756 | 639 60.8 [ 55.8 593 41.9 339 62.8 614 | 8min 7min [ €70 €70
MLLM-text 76.6 77.0 [ 649 62.0 [ 569 60.7 [ 43.2 355 64.3 63.1 [12min 13min | €92 €93
MLLM-multi 78.1 78.4 | 66.0  63.1 582 620 | 439 374 65.6 647 |10min_10min [ €72 €72
MLLM-multi 75.4 75.6 63.9 61.1 55.8 59.3 41.7 34.8 62.9 62.0 |30min 23 min | €155 €156
(gpt-4-turbo)
Without query-specific annotation guidance
LLM-text 71.2 67.0 | 575 529 | 544 514 | 39.0 344 57.6 522 [ 7min 7min | €45 €45
MLLM-text 72.5 68.0 [ 588 538 | 554 524 [ 397 34.1 58.7 534 |[1lmin 1lmin | €66 €67
MLLM-multi 74.1 71.9 61.1 57.1 56.3 56.4 41.9 42.3 61.6 59.9 4min 4 min €25 €24

Table 4: Like Table 3, except we use GPT-3.5 Turbo (specifically, “gpt-3.5-turbo-0125”) for text inputs and GPT-40
for generating textual descriptions for image inputs (Step 4 in Fig. 2). Here, we do not have “MLLM-multi” as
GPT-3.5 Turbo does not accept multimodal (text and image) inputs.

Agreement with [Agreement with|Agreement with| Agreement with | Inter Annotator
Annotator Al OR A2 (%) Al (%) A2 (%) Tiebreaker (%) | Agreement (%) Total time Cost

EN | DE | EN [ DE | EN | DE | EN | DE EN | pDE | EN | DE | EN [ DE
Al 76.6 75.9 - - 60.2 60.5 40.0 37.5 60.2 60.5 3 weeks €15,000
A2 75.8 76.1 60.2  60.5 - - 37.5 36.6 60.2 60.5 3 weeks €15,000
LLM-text 65.2 63.4 513 485 49.6 487 40.1 37.7 52.1 49.3 6 min 6 min €6 €6
MLLM-text 66.1 62.6 51.6 482 50.9  48.1 40.8 39.2 53.1 49.6 [llmin 1lmin | €24 €25
Without query-specific annotation guidance
LLM-text 59.1 57.0 | 439 43.0 | 465 428 41.1 47.9 47.6 46.3 4min 4 min €4 €4
MLLM-text 60.1 572 | 450 429 | 474 434 41.9 50.2 48.9 474 | 9min 10min | €21 €22




	Introduction
	Multimodal LLM-based relevance assessment
	Experiments and Results
	Dataset
	LLM versus Human Annotators

	Discussion
	Conclusion
	Ethics Statement
	Multimodal LLM-powered relevance assessment: evaluation steps for an example query
	Human Annotation Guidelines
	Experiments with LLM types: GPT-3.5, GPT-4, and GPT-4o
	LLM versus Human error types
	Subjective Nature of Relevance Judgements

