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Abstract. Multilabel classification is an extension of conventional clas-
sification in which a single instance can be associated with multiple la-
bels. Recent research has shown that, just like for standard classification,
instance-based learning algorithms relying on the nearest neighbor esti-
mation principle can be used quite successfully in this context. In this
paper, we propose a new instance-based approach to multilabel classifi-
cation, which is based on calibrated label ranking, a recently proposed
framework that unifies multilabel classification and label ranking. Within
this framework, instance-based prediction is realized is the form of MAP
estimation, assuming a statistical distribution called the Mallows model.

1 Introduction

In conventional classification, each instance is assumed to belong to exactly one
among a finite set of candidate classes. As opposed to this, the setting of multi-
label classification allows an instance to belong to several classes simultaneously
or, say, to attach more than one label to an instance. Multilabel classification
has received increasing attention in machine learning in recent years.

Even though quite a number of sophisticated methods for multilabel clas-
sification has been proposed in the literature, the application of instance-based
learning (IBL) has not been studied very deeply in this context so far. This is a
bit surprising, given that IBL algorithms based on the nearest neighbor estima-
tion principle have been applied quite successfully in classification and pattern
recognition for a long time [1]. A notable exception is the multilabel k-nearest
neighbor (MLKNN) method that was recently proposed in [2], where it was
shown to be competitive to state-of-the-art machine learning methods.

In this paper, we introduce a new instance-based approach to multilabel
classification, which is based on calibrated label ranking, a recently proposed
framework that unifies multilabel classification and label ranking (see Section 2).
Within this framework, instance-based prediction is realized is the form of MAP
estimation, assuming a statistical distribution called the Mallows model (see
Section 3). Experimental results, presented in Section 5, provide evidence for
the strong performance of this approach in terms of predictive accuracy.



2 Multilabel Classification as Calibrated Label Ranking

Let X denote an instance space and let L = {λ1, λ2 . . . λm} be a finite set of
class labels. Moreover, suppose that each instance x ∈ X can be associated with
a subset of labels L ∈ 2L; this subset is often called the set of relevant labels,
while the complement L\L is considered as irrelevant for x. Given training data
in the form of a finite set T of observations in the form of tuples (x, Lx) ∈ X×2L,
typically assumed to be drawn independently from an (unknown) probability
distribution on X×2L, the goal in multilabel classification is to learn a classifier
h : X → 2L that generalizes well beyond these observations in the sense of
minimizing the expected prediction loss with respect to a specific loss function.

Note that multilabel classification can be reduced to a conventional classifica-
tion problem in a straightforward way, namely by considering each label subset
L ∈ 2L as a distinct (meta-)class. This approach is referred to as label powerset
in the literature. An obvious drawback of this approach is the potentially large
number of classes that one has to deal with in the newly generated problem.
Another way of reducing multilabel to conventional classification is offered by
the binary relevance (BR) approach. Here, a single binary classifier hi is trained
for each label λi ∈ L. For a query instance x, this classifier is supposed to pre-
dict whether λi is relevant for x (hi(x) = 1) or not (hi(x) = 0). A multilabel
prediction for x is then given by h(x) = {λi ∈ L |hi(x) = 1}. Since binary
relevance learning treats every label independently of all other labels, an obvi-
ous disadvantage of this approach is that it ignores potential correlations and
interdependencies between labels.

Some of the more sophisticated approaches learn a multilabel classifier h in
an indirect way via a scoring function f : X×L → R that assigns a real number
to each instance/label combination. Such a function does not only allow one
to make multilabel predictions (via thresholding the scores), but also offers the
possibility to produce a ranking of the class labels, simply by ordering them
according to their score. Sometimes, this ranking is even more desirable as a
prediction, and indeed, there are several evaluation metrics that compare a true
label subset with a predicted ranking instead of a predicted label subset.

In the following, we propose a formalization of multilabel classification within
the framework of label ranking. More specifically, as will be seen, this framework
allows one to combine the concepts of a ranking and a multilabel prediction (label
subset) in a convenient way.

2.1 Label Ranking

The problem of label ranking, which has recently been introduced in machine
learning [3, 4], can be seen as another extension of the conventional classification
setting. Instead of associating every instance x ∈ X with one among a finite set
of class labels L = {λ1, λ2 . . . λm}, we associate x with a total order of all class
labels, that is, a complete, transitive, and asymmetric relation �x on L, where
λi �x λj indicates that λi precedes λj . Since a ranking can be considered as a



special type of preference relation, we shall also say that λi �x λj indicates that
λi is preferred to λj given the instance x.

Formally, a total order �x can be identified with a permutation πx of the set
{1 . . .m}. It is convenient to define πx such that πx(i) = πx(λi) is the position
of λi in the order. This permutation encodes the (ground truth) order relation

λπ−1
x (1) �x λπ−1

x (2) �x . . . �x λπ−1
x (m) ,

where π−1
x (j) is the index of the label put at position j. The class of permutations

of {1 . . .m} (the symmetric group of order m) is denoted by Ω. By abuse of
terminology, though justified in light of the above one-to-one correspondence,
we refer to elements π ∈ Ω as both permutations and rankings.

In analogy with the classification setting, we do not assume the existence of
a deterministic X → Ω mapping. Instead, every instance is associated with a
probability distribution over Ω. This means that, for each x ∈ X, there exists
a probability distribution P(· |x) such that, for every π ∈ Ω, P(π |x) is the
probability that πx = π.

The goal in label ranking is to learn a “label ranker” in the form of an
X → Ω mapping. As training data, a label ranker uses a set of instances xk,
k = 1 . . . n, together with information about one or more pairwise preferences of
the form λi �xk

λj . To evaluate the predictive performance of a label ranker, a
suitable loss function on Ω is needed. In the statistical literature, several distance
measures for rankings have been proposed. One commonly used measure is the
number of discordant label pairs,

D(π, σ) = #{(i, j) |π(i) > π(j) ∧ σ(i) < σ(j)} , (1)

which is closely related to Kendall’s tau coefficient. In fact, the latter is a nor-
malization of (1) to the interval [−1,+1]. We shall focus on Kendall’s tau as
a natural, intuitive, and easily interpretable measure [5] throughout the paper,
even though other distance measures could of course be used. A desirable prop-
erty of any distance D(·) is its invariance toward a renumbering of the elements
(renaming of labels). This property is equivalent to the right invariance of D(·),
namely D(σν, πν) = D(σ, π) for all σ, π, ν ∈ Ω, where σν = σ ◦ ν denotes the
permutation i 7→ σ(ν(i)). The distance (1) is right-invariant, and so are most
other commonly used metrics on Ω.

2.2 Calibrated Label Ranking

A label ranking provides information about the relative preference for labels,
but not about the absolute preference or, say, relevance of a label. To combine
the information offered by a label ranking and a multilabel classification (label
subset), the concept of a calibrated label ranking has been proposed in [6]. A
calibrated label ranking is a ranking of the label set Ω extended by a neutral
label λ0. The idea is that λ0 splits a ranking into two parts, the positive (relevant)
part consisting of those labels λi preceding λ0 (i.e., λi �x λ0), and the negative



(irrelevant) part given by those labels λj ranked lower than λ0 (i.e., λ0 �x λj).
In this way, a multilabel prediction can be derived from a (predicted) calibrated
label ranking.

The other way around, a multilabel set Lx translates into the set of pairwise
preferences {λ �x λ′ |λ ∈ Lx, λ

′ ∈ L \ Lxi
}, and can hence be considered

as incomplete information about an underlying calibrated label ranking. More
specifically, Lx is consistent with the set of label rankings E(Lx) given by those
permutations π ∈ Ω that rank all labels in Lx higher and all labels in L \ Lxi

lower than the neutral label λ0. In the following, when we speak about a ranking,
we always mean a calibrated ranking (i.e., Ω contains the neutral label λ0).

3 Instance-Based Multilabel Classification

So far, no assumptions about the conditional probability measure P(· |x) on
Ω were made, despite its existence. To become more concrete, we resort to
a popular and commonly used distance-based probability model introduced by
Mallows [5]. The standard Mallows model is a two-parameter model that belongs
to the exponential family:

P(σ | θ, π) =
exp(−θD(π, σ))

φ(θ, π)
(2)

The ranking π ∈ Ω is the location parameter (mode, center ranking) and θ ≥ 0
is a spread parameter.

Obviously, the Mallows model assigns the maximum probability to the cen-
ter ranking π. The larger the distance D(σ, π), the smaller the probability of σ
becomes. The spread parameter θ determines how quickly the probability de-
creases, i.e., how peaked the distribution is around π. For θ = 0, the uniform
distribution is obtained, while for θ →∞, the distribution converges to the one-
point distribution that assigns probability 1 to π and 0 to all other rankings.

Coming back to the label ranking problem and the idea of instance-based
learning, i.e., local prediction based on the nearest neighbor estimation principle,
consider a query instance x ∈ X and let x1 . . .xk denote the nearest neighbors
of x (according to an underlying distance measure on X) in the training set,
where k ∈ N is a fixed integer. Each neighbor xi is associated with a subset
Lxi
⊆ L of labels. In analogy to the conventional settings of classification and

regression, in which the nearest neighbor estimation principle has been applied
for a long time, we assume that the probability distribution P(· |x) on Ω is (at
least approximately) locally constant around the query x, so that the neighbors
can be considered as a sample on the basis of which P(· |x) can be estimated.

Thus, assuming an underlying (calibrated) label ranking, the probability to
observe Lxi is given by

P(E(Lxi)) =
∑

σ∈E(Lxi
)

P(σ | θ, π) ,



where E(Lxi
) denotes the set of all label rankings consistent with Lxi

. Making
a simplifying assumption of independence, the probability of the complete set of
observations L = {Lx1 , Lx2 . . . Lxk

} then becomes

P(L | θ, π) =
k∏
i=1

P(E(Lxi) | θ, π)

=
k∏
i=1

∑
σ∈E(Lxi

)

P(σ | θ, π) (3)

=

∏k
i=1

∑
σ∈E(Lxi

) exp (−θD(σ, π))(∏m
j=1

1−exp(−jθ)
1−exp(−θ)

)k .

Instance-based prediction of the (calibrated) label ranking Lx can now be posed
as a Maximum Likelihood problem, namely as finding the Maximum Likelihood
estimation (MLE) of π (and θ) in (3). This problem is extremely difficult in
general. Fortunately, in the context of multi-label classification, we are able to
exploit the special structure of the observations. More specifically, we can show
the following theorem (proof omitted).

Theorem 1: For each label λi ∈ L, let f(λi) denote the frequency of occurrence
of this label in the neighborhood of x, i.e., f(λi) = #{j |λi ∈ Lxj

}/k. More-
over, let f(λ0) = 1/2 by definition. Then, a ranking π ∈ Ω is a MLE in (3) iff it
guarantees that f(λi) > f(λj) implies π(i) < π(j).

According to this result, an optimal ranking and, hence, an optimal multi-
label prediction can simply be found by sorting the labels according to their
frequency of occurrence in the neighborhood. A disadvantage of this estimation
is its ambiguity in the presence of ties: If two labels have the same frequency,
they can be ordered in either way. Interestingly, we can remove this ambiguity
by replacing the MLE by a Bayes estimation.

Theorem 2: Let g(λi) denote the frequency of occurrence of the label λi in the
complete training set. There exists a prior distribution P on Ω such that, for
large enough k, a ranking π ∈ Ω is a maximum posterior probability (MAP)
estimation iff it guarantees the following: If f(λi) > f(λj) or f(λi) = f(λj) and
g(λi) > g(λj), then π(i) < π(j).

This result suggests a very simple prediction procedure: Labels are sorted
according to their frequency in the neighborhood of the query, and ties are
broken by resorting to global information outside the neighborhood, namely the
label frequency in the complete training data (which serve as estimates of the
unconditional probability of a label).



4 Related Work

Multilabel classification has received a great deal of attention in machine learning
in recent years, and a number of methods has been developed, often motivated
by specific types of applications such as text categorization [7–10], computer
vision[11], and bioinformatics [12, 13, 10]. Besides, several well-established meth-
ods for conventional classification have been extended to the multi-label case,
including support vector machines [14, 13, 11], neural networks [10], and decision
trees [15].

Our interest in instance-based multilabel classification is largely motivated
by the multilabel k-nearest neighbor (MLKNN) method that has recently been
proposed in [2]. In that paper, the authors show that MLKNN performs quite
well in practice. In the concrete experiments presented, MLKNN even outper-
formed some state-of-the-art model-based approaches to multilabel classification,
including RankSVM and AdaBoost.MH [13, 16].

MLKNN is a binary relevance learner, i.e., it learns a single classifier hi for
each label λi ∈ L. However, instead of using the standard k-nearest neighbor
(KNN) classifier as a base learner, it implements the hi by means of a combina-
tion of KNN and Bayesian inference: Given a query instance x with unknown
multilabel classification L ⊆ L, it finds the k nearest neighbors of x in the train-
ing data and counts the number of occurrences of λi among these neighbors.
Considering this number, y, as information in the form of a realization of a
random variable Y , the posterior probability of λi ∈ L is given by

P(λi ∈ L |Y = y) =
P(Y = y |λi ∈ L) ·P(λi ∈ L)

P(Y = y)
, (4)

which leads to the decision rule

hi(x) =
{

1 if P(Y = y |λi ∈ L)P(λi ∈ L) ≥ P(Y = y |λi 6∈ L)P(λi 6∈ L)
0 otherwise

The prior probabilities P(λi ∈ L) and P(λi 6∈ L) as well as the conditional
probabilities P(Y = y |λi ∈ L) and P(Y = y |λi 6∈ L) are estimated from
the training data in terms of corresponding relative frequencies. While the es-
timation of the former probabilities is uncritical from a computational point of
view, the estimation of the conditional probabilities can become quite expensive.
Essentially, it requires the consideration of all k-neighborhoods of all training in-
stances, and the counting of the number of occurrences of each label within these
neighborhoods. Implementing nearest neighbor search in a naive way, namely by
linear search, this would mean a complexity of O(kn2), where n is the size of the
training data. Of course, this complexity can be reduced by using more efficient
algorithms and data structures for nearest neighbor search; for example, the all
nearest neighbors problem, i.e., the problem to find the (first) nearest neighbor
for each element of a data set, can be solved in time O(n log(n)) [17]. Never-
theless, the computational overhead produced by this kind of preprocessing on
the training data will remain a dominating factor for the overall runtime of the
method.



Table 1. Statistics for the multilabel data sets used in the experiments. The symbol *
indicates that the data set contains binary features; cardinality is the average number
of labels per instance.

data set domain #instances #attributes #labels cardinality

emotions music 593 72 6 1.87
image vision 2000 135 5 1.24
genbase biology 662 1186∗ 27 1.25
mediamill multimedia 5000 120 101 4.27
reuters text 7119 243 7 1.24
scene vision 2407 294 6 1.07
yeast biology 2417 103 14 4.24

5 Experimental Results

This section is devoted to experimental studies that we conducted to get a con-
crete idea of the performance of our method. Before presenting results, we give
some information about the learning algorithms and data sets included in the
study, as well as the criteria used for evaluation.

5.1 Learning Algorithms

For the reasons mentioned previously, our main interest is focused on MLKNN,
which is arguably the state-of-the-art in instance-based multilabel ranking; we
used its implementation in the MULAN package.1 MLKNN is parameterized by
the size of the neighborhood, for which we adopted the value k = 10. This value
is recommended in [2], where it was found to yield the best performance. For the
sake of fairness, we use the same neighborhood size for our method (Mallows). In
both cases, the simple Euclidean metric (on the complete attribute space) was
used as a distance function. As an additional baseline we used binary relevance
learning (BR) with C4.5 (the WEKA [18] implementation J48 in its default
setting) as a base learner.

5.2 Data Sets

Benchmark data for multi-label classification is not as abundant as for conven-
tional classification, and indeed, experiments in this field are often restricted
to a very few or even only a single data set. For our experimental study, we
have collected a comparatively large number of seven data sets from different
domains; an overview is given in Table 1.2

The emotions data was created from a selection of songs from 233 musical
albums [19]. From each song, a sequence of 30 seconds after the initial 30 seconds
1 http://mlkd.csd.auth.gr/multilabel.html
2 All data sets are public available at http://mlkd.csd.auth.gr/multilabel.html

and http://lamda.nju.edu.cn/data.htm.



was extracted. The resulting sound clips were stored and converted into wave
files of 22050 Hz sampling rate, 16-bit per sample and mono. From each wave file,
72 features have been extracted, falling into two categories: rhythmic and timbre.
Then, in the emotion labeling process, 6 main emotional clusters are retained
corresponding to the Tellegen-Watson-Clark model of mood: amazed-surprised,
happy-pleased, relaxing-clam, quiet-still, sad-lonely and angry-aggressive.

Image and scene are semantic scene classification data sets proposed, respec-
tively, by [20] and [11], in which a picture can be categorized into one or more
classes. In the scene data, for example, pictures can have the following classes:
beach, sunset, foliage, field, mountain, and urban. Features of this data set cor-
respond to spatial color moments in the LUV space. Color as well as spatial
information have been shown to be fairly effective in distinguishing between cer-
tain types of outdoor scenes: bright and warm colors at the top of a picture may
correspond to a sunset, while those at the bottom may correspond to a desert
rock. Features of the image data set are generated by the SBN method [21] and
essentially correspond to attributes in an RGB color space.

From the biological field, we have chosen the two data sets yeast and genbase.
The yeast data set is about predicting the functional classes of genes in the Yeast
Saccharomyces cerevisiae. Each gene is described by the concatenation of micro-
array expression data and a phylogenetic profile, and is associated with a set
of 14 functional classes. The data set contains 2417 genes in total, and each
gene is represented by a 103-dimensional feature vector. In the genbase data, 27
important protein families are considered, including, for example, PDOC00064
(a class of oxydoreductases) and PDOC00154 (a class of isomerases). During the
preprocessing, a training set was exported, consisting of 662 proteins that belong
to one or more of these 27 classes.

From the text processing field, we have chosen a subset of the widely studied
Reuters-21578 collection [22]. The seven most frequent categories are considered.
After removing documents whose label sets or main texts are empty, 8866 docu-
ments are retained where only 3.37% of them are associated with more than one
class label. After randomly removing documents with only one label, a text cat-
egorization data set containing 2,000 documents is obtained. Each document is
represented as a bag of instances using the standard sliding window techniques,
where each instance corresponds to a text segment enclosed in one sliding win-
dow of size 50 (overlapped with 25 words). “Function words” are removed from
the vocabulary and the remaining words are stemmed. Instances in the bags
adopt the “bag-of-words” representation based on term frequency. Without loss
of effectiveness, dimensionality reduction is performed by retaining the top 2%
words with highest document frequency. Thereafter, each instance is represented
as a 243-dimensional feature vector.

The mediamill data set is from the field of multimedia indexing and origi-
nates from the well-known TREC Video Retrieval Evaluation data (TRECVID
2005/2006) initiated by American National Institute of Standards and Technol-
ogy (NIST), which contains 85 hours of international broadcast news data. The
task in this data set is the automated detection of a lexicon of 101 semantic



Table 2. Experimental results in terms of Hamming loss (left) and rank loss (right).

data set MLKNN Mallows BR MLKNN Mallows BR

emotions 0.261 0.197 0.253 0.262 0.163 0.352
genbase 0.005 0.003 0.001 0.006 0.006 0.006
image 0.193 0.192 0.243 0.214 0.208 0.398
mediamill 0.027 0.027 0.032 0.037 0.036 0.189
reuters 0.073 0.085 0.057 0.068 0.087 0.089
scene 0.087 0.094 0.131 0.077 0.088 0.300
yeast 0.194 0.197 0.249 0.168 0.165 0.360

concepts in videos. Every instance of this data set has 120 numeric features
including visual, textual, as well as fusion information. The trained classifier
should be able to categorize an unseen instance to some of these 101 labels, e.g.,
face, car, male, soccer, and so on. More details about this data set can be found
at [23].

5.3 Evaluation Measures

To evaluate the performance of multilabel classification methods, a number of
criteria and metrics have been proposed in the literature. For a classifier h, let
h(x) ⊆ L denote its multilabel prediction for an instance x, and let Lx denote
the true set of relevant labels. The Hamming loss computes the percentage of
labels whose relevance is predicted incorrectly:

HamLoss(h) =
1
|L|
∣∣h(x)∆Lx

∣∣, (5)

where ∆ is the symmetric difference between two sets.
To measure the ranking performance, we used the rank loss, which computes

the average fraction of label pairs that are not correctly ordered:

RankLoss(f) =
#{(λ, λ′) |πx(λ) ≤ πx(λ′), (λ, λ′) ∈ Lx × Lx}

|Lx||Lx|
, (6)

where πx(λ) denotes the position assigned to label λ for instance x, and Lx =
L \ Lx is the set of irrelevant labels.

5.4 Results

The results of a cross validation study (10-fold, 5 repeats) are summarized in Ta-
ble 2. As can be seen, both instance-based approaches perform quite strongly in
comparison to the baseline, which is apparently not competitive. The instance-
based approaches themselves are more or less en par, with a slight though sta-
tistically non-significant advantage for our method.
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Fig. 1. Runtime of the methods on the image data.

As discussed in the previous section, MLKNN is expected to be less efficient
from a computational point of view, and this expectation was confirmed by our
experiments. Indeed, our approach scales much better than MLKNN. A typical
example is shown in Fig. 1, where the runtime (total time needed to conduct a
10-fold cross validation) is plotted as a function of the size of the data; to obtain
data sets of different size, we sampled from the image data.

6 Summary and Conclusions

According to the literature, MLKNN can be considered as the state-of-the-art
in instance-based multilabel classification. In this paper, we have presented an
alternative instance-based multilabel classifier, which is (at least) competitive in
terms of predictive accuracy, while being computationally more efficient. In fact,
our approach comes down to a very simple prediction procedure, in which labels
are sorted according to their local frequency in the neighborhood of the query,
and ties are broken by global frequencies. Despite its simplicity, this approach is
well justified in terms of an underlying theoretical model.
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