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Abstract. In label ranking, the problem is to learn a mapping from
instances to rankings over a finite set of predefined class labels. In this
paper, we consider a generalization of this problem, namely label ranking
with a reject option. Just like in conventional classification, where a
classifier can refuse a presumably unreliable prediction, the idea is to
concede a label ranker the possibility to abstain. More specifically, the
label ranker is allowed to make a weaker prediction in the form of a
partial instead of a total order. Thus, unlike a conventional classifier
which either makes a prediction or not, a label ranker can abstain to a
certain degree. To realize label ranking with a reject option, we propose
a method based on ensemble learning techniques. First empirical results
are presented showing great promise for the usefulness of the approach.

1 Introduction

The problem to learn a mapping from instances to rankings over a finite set
of predefined labels, called label ranking, is a natural extension of conventional
classification where, instead of a ranking of all labels, only a single label is
requested as a prediction. Since a ranking is a special type of preference relation,
label ranking is of particular interest for preference learning, an emerging subfield
of machine learning [1].

Existing methods for label ranking are typically extensions of algorithms
for binary classification. Ranking by pairwise comparison (RPC) is a natural
extension of pairwise classification, in which binary preference models are learned
for each pair of labels, and the predictions of these models are combined into
a ranking of all labels [2]. Two other approaches, constraint classification and
log-linear models for label ranking, seek to learn a (linear) utility function for
each individual label [3, 4].

An important extension of conventional classification is classification with a
reject option [5–7]: The classifier is allowed to abstain from a prediction for a
query instance in case it is not sure enough. An abstention of this kind is an
obvious means to avoid unreliable predictions and, of course, does also make
sense in the context of label ranking. One may even argue that the idea of a
reject option becomes more interesting here: While a conventional classifier has
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only two choices, namely to predict a class label or to abstain, a label ranker
can abstain to a certain degree.

More specifically, for each pair of labels a and b, it can in principle decide
whether to make a prediction about the order relation between these labels,
namely a � b or b � a, or to abstain from this prediction. However, the pairwise
predictions should of course be consistent in the sense of being transitive and
acyclic. In other words, a label ranker with a (partial) reject option is expected
to make a prediction in the form of a partial order on the set of class labels. In
this paper, we propose a method that enables a label ranker to make predictions
of this kind. Roughly speaking, our idea is to train a committee of label rankers,
using ensemble learning techniques, and to derive a prediction in the form of a
consensus, namely the intersection between the label rankings predicted by the
members of the committee.

The rest of this paper is organized as follows. After a short recapitulation of
the label ranking problem in the next section, we propose our method for label
ranking with a reject option in Section 3. Experimental results are presented in
Section 4, and Section 5 concludes the paper with a summary.

2 Label Ranking

As mentioned earlier, label ranking can be seen as an extension of the conven-
tional setting of classification. Roughly speaking, the former is obtained from
the latter through replacing single class labels by complete label rankings. So,
instead of associating every instance x from an instance space X with one among
a finite set of class labels L = {λ1, λ2, . . . , λm}, we now associate x with a total
order of the class labels, that is, a complete, transitive, and asymmetric relation
�x on L where λi �x λj indicates that λi precedes λj in the ranking associ-
ated with x. It follows that a ranking can be considered as a special type of
preference relation, and therefore we shall also say that λi �x λj indicates that
λi is preferred to λj given the instance x. To illustrate, suppose that instances
are students (characterized by attributes such as sex, age, and major subjects
in secondary school) and � is a preference relation on a fixed set of study fields
such as Math, CS, Physics.

The goal in label ranking is to learn a “label ranker” in the form of an X → Ω
mapping, where Ω is the set of all rankings (or, equivalently, permutations) of L.
As training data, a label ranker uses a set of instances xk, k = 1, . . . , n, together
with information about the associated rankings. Ideally, complete rankings are
given as training information. From a practical point of view, however, it is also
important to allow for incomplete information. In the most general case, each
training instance is simply associated with a set of pairwise preferences of the
form λi �xk

λj , suggesting that, for instance xk, label λi should be ranked
higher than λj .

To evaluate the predictive performance of a label ranker, a suitable loss func-
tion on Ω is needed. In the statistical literature, several distance measures for
rankings have been proposed. One commonly used measure is the number of
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discordant pairs, that is, the number of label pairs (λi, λj) ∈ L × L which are
differently ordered in the two rankings. This measure is closely related to the
Kendall tau coefficient [8]. In fact, the latter is a normalization of the number of
discordant pairs to the interval [−1, 1] that can be interpreted as a correlation
measure (it assumes the value 1 if the two rankings coincide and the value −1 if
the first is the reversal of the second).

3 Label Ranking with Reject Option

Our idea to realize label ranking with a partial reject option is to train, instead
of only a single model, a complete ensemble of label rankers which is considered
as a “committee of experts”. Given a query instance x ∈ X, each member of
the committee makes a prediction in the form of a label ranking. Thus, given an
ensemble of size k, label rankings �1,�2, . . . ,�k are obtained. The idea, then,
is to define the overall prediction by the intersection of these rankings, namely
by the partial order � such that

(λi � λj)
df⇐⇒ ∀ l ∈ {1, 2, . . . , k} : λi �l λj .

In other words, the pairwise order relation λi � λj is predicted if and only if
it is supported by all members of the committee. Obviously, � thus defined is
indeed a proper partial order, i.e., it is transitive and acyclic.

The above prediction could be criticized due to its non-tolerance toward
incorrect predictions of single label rankers. An obvious way to make it more
tolerant is to ask for the agreement of most instead of all members of the com-
mittee:

(λi � λj)
df⇐⇒ #{l ∈ {1, 2, . . . , k} |λi �l λj}

k
≥ t , (1)

where t ∈]0.5, 1] is a tolerance threshold. Unfortunately, � thus defined is no
longer a partial order.

In fact, it is easily verified that � is not necessarily transitive. This problem
can be solved, however, by replacing � with its transitive closure (which can
easily be computed, for example, using Warshall’s algorithm [9]). As to the
property of being acyclic, the following proposition is of interest:

Proposition: Given a set of total orders on a finite set L, denote by Pab the
proportion of orders in which a precedes b. Then, for any triple of elements
a, b, c ∈ L, we have Pca ≤ 2− Pab − Pbc.
Proof: Looking at the order of the labels a, b, c, there are only three cases in which
c � a, namely (1) c � a � b, (2) c � b � a, (3) b � c � a. Since c � b occurs
in the first two cases, the relative frequency of these cases is upper-bounded by
1 − Pbc. Moreover, since b � a in the third case, the relative frequency of this
case is upper-bounded by 1 − Pab. Thus, in total the proportion of rankings in
which c � a cannot exceed 2− Pab − Pbc. �

As a corollary of this proposition, we immediately conclude that Pab ≥ 2/3
and Pbc ≥ 2/3 implies Pca ≤ 2/3. Thus, by choosing t > 2/3 in (1), we can
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guarantee that � is acyclic. In conjunction with the replacement of � in (1) by
its transitive closure, we thus guarantee the prediction of a proper partial order
relation.

To realize an ensemble of label rankers, we resort to the bootstrap aggregation
(bagging) approach. Given a training set D of size n, bagging generates k new
training sets Di of size n′ ≤ n by sampling from D with replacement. Thus, it
is likely that some examples will occur more than once in a subsample Di. If
n′ = n (as will be assumed throughout the paper) and n is large, then Di is
expected to contain 63.2% of the examples of D, the rest being duplicates. This
kind of sample is known as a bootstrap sample. The k models are then fitted
using the above k bootstrap samples.

The complete approach to learning a label ranker with reject option is sum-
marized in Algorithm 1.

Algorithm 1 Label ranking with partial abstention
Require: query x ∈ X, training data D, integer k, base learner B, threshold t
Ensure: matrix M encoding the estimation for x (Mij = 1 means λi � λj)

1: initialize M as zero matrix
2: generate k bootstrap samples from D
3: get k label rankings for x using B
4: for each of k label rankings do
5: for every pair of labels λi, λj ∈ L do
6: if λi � λj then
7: set Mij = Mij + 1
8: end if
9: end for

10: end for
11: for every entry in M do
12: if Mij ≥ t × k then
13: set Mij = 1
14: else
15: set Mij = 0
16: end if
17: end for
18: update M with Warshall’s algorithm to ensure transitivity

4 Experiments and Evaluation

4.1 Learning Method and Data Sets

To implement the approach outlined above, we use ranking by pairwise compar-
ison with logistic regression as a base learner [2, 1].

In light of the lack of benchmark data for label ranking, we used five classifi-
cation data sets from the UCI repository and the Statlog collection and turned

20



them into label ranking data following the procedure proposed in [1]: A naive
Bayes classifier is first trained on the complete data set. Then, for each example,
all the labels present in the data set are ordered with respect to the predicted
class probabilities (in the case of ties, labels with lower index are ranked first).
A summary of the data sets and their properties is given in Table 1.1

Table 1. Data sets and their properties.

data set # inst. # attr. # labels

iris 150 4 3
wine 178 13 3
glass 214 9 6
vowel 528 10 11

vehicle 846 18 4

4.2 Evaluation

To verify the effectiveness of our approach, we produce generalized accuracy-
rejection curves. In conventional classification, a curve of this kind plots the
accuracy on the subset of instances which are still classified as a function of the
level of rejection. If a reject option is used by a learner in a sensible way, this curve
should be increasing: The more instances are rejected, the better the performance
on the remaining ones should become, since these are the supposedly reliable
cases.

To measure the performance on the remaining predictions, we generalize the
Kendall measure as follows:

C(�,�) =
#concordant label pairs−#discordant label pairs
#concordant label pairs + #discordant label pairs

(2)

This measure compares a predicted partial ranking � of L = {λ1, . . . , λm} with
a true ranking �. A pair of labels λi, λj is concordant if λi � λj and λi � λj

(or λj � λi and λj � λi) and discordant if λi � λj and λj � λi (or λj � λi and
λi � λj). Note that, if � abstains on the pair λi, λj , then this pair is neither
concordant nor discordant.2

4.3 Results and Discussion

Table 2 shows the results for an ensemble of size 10. The level of rejection is
measured in terms of the threshold t in (1): The larger this threshold, the less

1 The data sets, along with a description, are available at
www.uni-marburg.de/fb12/kebi/research

2 In the extreme case of complete abstention, the nominator and denominator of (2)
both become 0; we ignore such instances in the evaluation.
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complete the predicted rankings will become. For comparison, we also show
the performance of a conventional label ranker, namely a single RPC model
produced on the complete training data. This model always predicts complete
rankings and, therefore, has the smallest level of rejection.

As can be seen from the table, our approach is indeed effective in the sense
that, throughout all data sets and across all levels, the higher the level of rejec-
tion, the better the performance becomes.

Table 2. Results of label ranking with reject option (ensemble size 10) in terms of the
mean and standard deviation of measure (2).

threshold iris wine glass vowel vehicle

original 0.868±0.093 0.884±0.078 0.793±0.070 0.324±0.028 0.809±0.034
0.7 0.919±0.066 0.918±0.079 0.847±0.055 0.436±0.034 0.851±0.032
0.8 0.921±0.064 0.956±0.057 0.869±0.055 0.478±0.039 0.872±0.031
0.9 0.940±0.050 0.971±0.049 0.892±0.054 0.515±0.045 0.896±0.031
1.0 0.950±0.045 0.995±0.019 0.928±0.046 0.563±0.056 0.926±0.027

5 Summary

In this paper, we have proposed a method for label ranking with a (partial) reject
option, that is, for the problem to learn a mapping from instances to partial
orders over a fixed set of class labels. The general idea of the method is to train
an ensemble of label rankers and to predict a pairwise order relation between
two labels only if this relation is supported by the large majority of ensemble
members. First experimental results suggest that this approach is effective in the
sense of eliminating those parts of a total order that are indeed most unreliable.
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