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Abstract. In multi-label classification (MLC), each instance is associ-
ated with a subset of labels instead of a single class, as in conventional
classification, and this generalization enables the definition of a multitude
of loss functions. Indeed, a large number of losses has already been pro-
posed and is commonly applied as performance metrics in experimental
studies. However, even though these loss functions are of a quite different
nature, a concrete connection between the type of multi-label classifier
used and the loss to be minimized is rarely established, implicitly giv-
ing the misleading impression that the same method can be optimal for
different loss functions. In this paper, we elaborate on risk minimization
and the connection between loss functions in MLC, both theoretically
and empirically. In particular, we compare two important loss functions,
namely the Hamming loss and the subset 0/1 loss. We perform a regret
analysis, showing how poor a classifier intended to minimize the sub-
set 0/1 loss can become in terms of Hamming loss and vice versa. The
theoretical results are corroborated by experimental studies, and their
implications for MLC methods are discussed in a broader context.

1 Introduction

The setting of multi-label classification (MLC) which, in contrast to conven-
tional (single-label) classification, allows an instance to belong to several classes
simultaneously, has received increasing attention in machine learning in recent
years [1,2,3,4,5,6]. In particular, several approaches aiming at the exploitation
of dependencies between class labels have been proposed. Even though the goal
itself is clearly worthwhile, and empirically, many approaches have indeed been
shown to improve predictive performance, a thorough theoretical analysis of the
MLC setting is still missing.
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Indeed, the notion of “label dependence” is often used in a purely intu-
itive manner. In this paper, we will argue that a careful distinction should be
made between two different but related forms of statistical dependence in MLC,
namely conditional and unconditional dependence. Moreover, we will establish a
close connection between conditional label dependence and loss minimization. In
MLC, a multitude of loss functions can be considered, and indeed, a large num-
ber of losses has already been proposed and is commonly applied as performance
metrics in experimental studies. However, even though these loss functions are
of a quite different nature, a concrete connection between the type of multi-label
classifier used and the loss to be minimized is rarely established, implicitly giv-
ing the misleading impression that the same method can be optimal for different
loss functions.

More specifically, this paper extends our previous work [7], in which we ana-
lyzed the connection between conditional label dependence and risk minimization
for three loss functions commonly used in MLC problems: Hamming, rank and
subset 0/1 loss. According to our results, the first two losses can in principle be
minimized without taking conditional label dependence into account, which is
not the case for the subset 0/1 loss.

In this paper, we further elaborate on the relationship between the Hamming
and subset 0/1 loss. Our main theoretical result states that, even though we can
establish mutual bounds for these loss functions, the bounds are not very tight.
On the contrary, we can show that the minimization of subset 0/1 loss may come
along with a very high regret in terms of Hamming loss and vice versa. As will
be discussed in more detail later on, these results have important implications
and suggest that previous experimental studies have often been interpreted in
an incorrect way.

Let us also remark that the analysis performed in this paper is simplified by
assuming an unconstrained hypothesis space. This allows for an analysis with
respect to the joint conditional distribution alone. Regarding related work, we
mention that generalization bounds have already been considered for problems
with structured outputs. Some of these results apply directly to MLC as a special
case [8,9]. Moreover, it is worth mentioning that a similar problems can be found
in information theory, namely bitwise and codeword decoding [10]. One can easily
notice that the bitwise and codeword decoding correspond to Hamming loss and
subset 0/1 loss minimization, respectively.

The structure of the paper is the following. Section 2 introduces the MLC
problem in a formal way. Section 3 contains the main theoretical results concern-
ing the bound and regret analysis. In Section 4, we present some experimental
results confirming our theoretical claims. The last section concludes the paper.

2 Multi-Label Classification

In this section, we describe the MLC problem in more detail and formalize it
within a probabilistic setting. Along the way, we introduce the notation used
throughout the paper.
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2.1 Problem Statement

Let X denote an instance space, and let L = {λ1, λ2, . . . , λm} be a finite set
of class labels. We assume that an instance x ∈ X is (non-deterministically)
associated with a subset of labels L ∈ 2L; this subset is often called the set of
relevant labels, while the complement L\L is considered as irrelevant for x. We
identify a set L of relevant labels with a binary vector y = (y1, y2, . . . , ym), in
which yi = 1 ⇔ λi ∈ L. By Y = {0, 1}m we denote the set of possible labelings.

We assume observations to be generated independently and randomly ac-
cording to a probability distribution p(X,Y) on X × Y, i.e., an observation
y = (y1, . . . , ym) is the realization of a corresponding random vector Y =
(Y1, Y2, . . . , Ym). We denote by px(Y) = p(Y |x) the conditional distribution
of Y given X = x, and by p(i)

x (Yi) = p(i)(Yi |x) the corresponding marginal
distribution of Yi:

p(i)
x (b) =

∑

y∈Y:yi=b

px(y)

A multi-label classifier h is an X → Y mapping that assigns a (predicted) label
subset to each instance x ∈ X . Thus, the output of a classifier h is a vector

h(x) = (h1(x), h2(x), . . . , hm(x)).

The problem of MLC can be stated as follows: Given training data in the form of
a finite set of observations (x, y) ∈ X × Y, drawn independently from p(X,Y),
the goal is to learn a classifier h : X → Y that generalizes well beyond these
observations in the sense of minimizing the risk with respect to a specific loss
function.

2.2 Label Dependence

As already announced in the introduction, we propose to distinguish two types
of dependence. We call the labels Y unconditionally independent if and only if

p(Y) =
m∏

i=1

p(i)(Yi). (1)

On the other hand, the labels are conditionally independent if the joint posterior
distribution is the product of the marginals:

px(Y) =
m∏

i=1

p(i)
x (Yi)

Obviously, both types of dependence are related to each other, since

p(Y) =
∫

X
px(Y)dP(x) .

Nevertheless, unconditional dependence does not imply nor is implied by con-
ditional dependence.
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It has been widely established in statistics that exploiting unconditional label
dependence can improve the generalization performance, because unconditional
label dependence mainly originates from a similar structure of the different mod-
els [11]. The same arguments have played a key role in the development of related
areas like multi-task learning and transfer learning, where task i and task j as
well their models are assumed to be related [12]. As we will show the conditional
dependence is rather connected with loss functions and their minimizers.

Let us remind that the joint distribution of a random vector Y = (Y1, . . . , Ym)
can be expressed by the product rule of probability:

p(Y) = p(Y1)
m∏

i=2

p(Yi|Y1, . . . , Yi−1)

If Y1, . . . , Ym are independent, then the product rule simplifies to (1).

2.3 Loss Functions

The performance in MLC is perhaps most frequently reported in terms of the
Hamming loss, which is defined as the fraction of labels whose relevance is in-
correctly predicted:1

LH(y,h(x)) =
1
m

m∑

i=1

�yi �= hi(x)�. (2)

Another natural loss function in the MLC setting is generalization of the well-
known 0/1 loss from the conventional to the multi-label setting:

Ls(y,h(x)) = �y �= h(x)�. (3)

This loss function is referred to as subset 0/1 loss. Admittedly, it may appear
overly stringent, especially in the case of many labels. Moreover, since making
a mistake on a single label is punished as hardly as a mistake on all labels,
it does not discriminate well between “almost correct” and completely wrong
predictions. However, mainly because of the fact that it is so extreme, it is
especially relevant for our discussion about label dependence. Besides, as will be
seen in more detail later on, it is a strong complement to the Hamming loss.

3 Analysis of Hamming and Subset 0/1 Loss

In this section, we analyze the Hamming and the subset 0/1 loss. The analysis
is performed by assuming an unconstrained hypothesis space. This allows us to
simplify the analysis by considering the conditional distribution for a given x.
First, we recall the risk minimizers of the two loss functions, already presented
in [7], and then show that, despite being different in general, they may coincide
under specific conditions. Further, we derive mutual bounds for the two loss
functions. Finally, we will show how poorly a classifier intended to minimize the
subset 0/1 loss can perform in terms of Hamming loss and vice versa.
1 For a predicate P , the expression �P � evaluates to 1 if P is true and to 0 if P is

false.



284 K. Dembczyński et al.

3.1 Risk Minimization

The risk of a classifier h is defined as the expected loss over the joint distribution
p(X,Y):

RL(h) = EXYL(Y,h(X)), (4)

where L(·) is a loss function on multi-label predictions. A risk-minimizing model
h∗ is given by

h∗ = argmin
h

EXYL(Y,h(X)) = arg min
h

EX[EY|XL(Y,h(X)] (5)

and determined in a pointwise way by the Bayes optimal decisions

h∗(x) = arg min
y

EY|XL(Y, y). (6)

For the Hamming loss (2), it is easy to see that the risk minimizer (6) is obtained
by

h∗
H(x) = (hH1(x), . . . , hHm(x)),

where
hHi(x) = arg max

b∈{0,1}
p(i)

x (b) (i = 1, . . . , m). (7)

The Bayes prediction for (3) is also straight-forward. As for any other 0/1 loss,
it simply consists of predicting the mode of the distribution:

h∗
s(x) = argmax

y∈Y
px(y) (8)

As one of the most important consequences of the above results we note that,
according to (7), a risk-minimizing prediction for the Hamming loss can be ob-
tained from the marginal distributions p(i)

x (Yi) (i = 1, . . . , m) alone. In other
words, it is not necessary to know the joint label distribution px(Y) on Y. For
finding the minimizer (8), on the other hand, the joint distribution must obvi-
ously be known. These results suggest that taking conditional label dependence
into account is less important for Hamming loss than for subset 0/1 loss.

Despite the differences noted above, we can show that the two risk minimizers
coincide under specific conditions. More specifically, we can show the following
proposition.

Proposition 1. The Hamming loss and subset 0/1 have the same risk mini-
mizer, i.e., h∗

H(x) = h∗
s(x), if one of the following conditions holds:

(1) Labels Y1, . . . , Ym are conditionally independent, i.e., px(Y) =
∏m

i=1 px(Yi).
(2) The probability of the mode of the joint probability is greater or equal than

0.5, i.e., px(h∗
s(x)) ≥ 0.5.

Proof. (1) Since the joint probability of any combination of y is given by the
product of marginal probabilities, the highest value of this product is given by the
highest values of the marginal probabilities. Thus, the joint mode is composed
of the marginal modes.
(2) If px(h∗

s(x)) ≥ 0.5, then px(h∗
si

(x)) ≥ 0.5, i = 1, . . . , m, and from this it
follows that h∗

si
(x) = h∗

Hi
(x). ��
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As a simple corollary of this proposition, we have the following.

Corollary 1. In the separable case (i.e., the joint conditional distribution is
deterministic, px(Y) = �Y = y�, where y is a binary vector of size m), the risk
minimizers of the Hamming loss and subset 0/1 coincide.

Proof. If px(Y) = �Y = y�, then px(Y) =
∏m

i=1 px(Yi). In this case, we also
have px(h∗

s(x)) ≥ 0.5. Thus, the result follows from both (1) and (2) in Propo-
sition 1. ��

3.2 Bound Analysis

So far, we have looked at the minimizers of Hamming and subset 0/1 loss and
we have seen that these minimizers may coincide under special conditions. In
general, however, they are different and, therefore, will call for different classi-
fiers. Another natural question one may ask is the following: If we fix a classifier
and we know, say, its subset 0/1 loss, can we say anything about its Hamming
loss? This question is answered by the following proposition.

Proposition 2. For all distributions of Y given x, and for all models h, the
expectation of the subset 0/1 loss can be bounded in terms of the expectation of
the Hamming loss as follows:

1
m

EY[Ls(Y, h(x))] ≤ EY[LH(Y, h(x))] ≤ EY[Ls(Y, h(x))] (9)

Proof. For a fixed x ∈ X , we can express the expected loss as follows:

EY[L(Y, h(x))] =
∑

y∈Y
p(y)L(y, h(x))

Suppose we can express an MLC loss in terms of an aggregation G : {0, 1}m →
[0, 1] of the standard zero-one losses L0/1 on individual labels (as used in con-
ventional classification):

L(y, h(x)) = G(L0/1(y1, h1(x)), . . . , L0/1(ym, hm(x))) . (10)

Indeed, the subset 0/1 loss and the Hamming loss can be written, respectively,
as

Gmax(a) = Gmax(a1, . . . , am) = max{a1, . . . , am}
Gmean(a) = Gmean(a1, . . . , am) =

1
m

(a1 + . . . + am).

This immediately leads to the above lower and upper bound for the Hamming
loss. The proposition then immediately follows from the fact that 1

mGmax(a) ≤
Gmean(a) ≤ Gmax(a) for all a ∈ [0, 1]m. ��
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Interestingly, it turns out that the location of the Hamming loss between the
bounds in (9) is in direct correspondence with the conditional dependence be-
tween the labels, and when the dependence structure of the conditional distri-
bution of Y is given, the difference between Hamming loss and subset 0/1 loss
can be determined in a more precise way. Roughly speaking, the less (more)
dependent the labels are, the more the Hamming loss moves toward the lower
(upper) bound. Without going into detail, we note that more precise estimations
of the difference between subset 0/1 loss and Hamming loss can be derived with
the help of copulas [13].

Nevertheless, we need to emphasize that a complete analysis of the relation-
ship between bound (9) and conditional label dependence has to take additional
factors into account. One of these factors is the hypothesis space one considers;
the lower bound will become more tight when restricting to certain hypothesis
spaces. Another important factor is the interplay between conditional and un-
conditional label dependence. For example, in case of full positive dependence
between all labels, estimating the Hamming loss might still be more simple than
estimating the subset 0/1 loss, implying that the upper bound will not behave as
an equality. The analysis of this section mainly provides insights on the behavior
of the different loss functions for the underlying distribution. Yet, we realize that
the picture might look different in terms of estimated performance after training
on a finite set of examples.

3.3 Regret Analysis

Some of the previous results may suggest that, for learning a risk minimizing
classifier, either loss functions can be used as a proxy of the other one. For
example, the bounds in (9) may suggest that a low subset 0/1 loss will also
imply a low Hamming loss. On the other hand, one may argue that the bounds
themselves are rather weak, and reckon that the concrete difference in terms of
Hamming and subset 0/1 loss may become quite high. In this section, we present
a regret analysis showing that minimization of Hamming loss does not guarantee
good performance in terms of subset 0/1 loss and vice versa.

The regret of a classifier h with respect to a loss function Lz is defined as
follows:

rLz (h) = RLz(h) − RLz(h∗
z), (11)

where R is the risk given by (4), and h∗
z is the Bayes-optimal classifier with

respect to the loss function Lz.
In the following, we consider the regret with respect to the Hamming loss,

given by
rH(h) = EXYLH(Y, h(X)) − EXYLH(Y, h∗

H(X)),

and the subset 0/1 loss, given by

rH(h) = EXYLs(Y, h(X)) − EXYLs(Y, h∗
s(X)).

Since both loss functions are decomposable with respect to individual instances,
we analyze the expectation over Y for a given x. The first result concerns the
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highest value of the regret in terms of the subset 0/1 loss for h∗
H(X), the optimal

strategy for the Hamming loss.

Proposition 3. The following upper bound holds:

EYLs(Y, h∗
H(x)) − EYLs(Y, h∗

s(x)) < 0.5.

Moreover, this bound is tight, i.e.,

sup
p

(EYLs(Y, h∗
H(x)) − EYLs(Y, h∗

s(x))) = 0.5,

where the supremum is taken over all probability distributions on Y.

Proof. Since the risk of any classifier h is within the range [0, 1], the maximal
value of the regret is 1. However, according to the second part of Proposition 1,
both risk minimizers coincide if EYLs(Y, h∗

s(x)) ≤ 0.5. Consequently, the regret
must be (strictly) smaller than 0.5. To prove the tightness of the bound, we show
that, for any δ ∈ (0, 1

6 ), there is a probability distribution p that yields the regret
0.5 − δ. Define p as follows:

p(y) =

⎧
⎨

⎩

1
2 − δ, if y = (a1, . . . , ak−1, āk+1, . . . , ām)
1
2 − δ, if y = (ā1, . . . , āk−1, ak+1, . . . , am)
2δ, if y = (a1, . . . , ak−1, ak+1, . . . , am)

where ai ∈ {0, 1} and āi = 1− ai. Such a distribution can be constructed for all
m > 1. Obviously,

h∗
s(x) = (a1, . . . , ak−1, āk+1, . . . , ām) or

h∗
s(x) = (ā1, . . . , āk−1, ak+1, . . . , am)

and
h∗

H(x) = (a1, . . . , ak−1, ak+1, . . . , am)

Finally, we thus obtain

EYLs(Y, h∗
H(x)) = 1 − 2δ

and
EYLs(Y, h∗

s(x)) = 0.5 − δ,

which immediately proves the proposition. ��
The second result concerns the highest value of the regret in terms of the Ham-
ming loss for h∗

s(X), the optimal strategy for the subset 0/1 loss.

Proposition 4. The following upper bound holds for m > 3:

EYLH(Y, h∗
s(x)) − EYLH(Y, h∗

H(x)) <
m − 2
m + 2

.

Moreover, this bound is tight, i.e.

sup
p

(EYLH(Y, h∗
s(x)) − EYLH(Y, h∗

H(x))) =
m − 2
m + 2

,

where the supremum is taken over all probability distributions on Y.
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Proof. Because of space limitations, we only show how to construct the distri-
bution for which the regret is close to the given bound.

Let ai ∈ {0, 1} and āi = 1 − ai. If am = (a1, a2, . . . , am) is a {0, 1}-vector of
length m, then ām denotes the vector (ā1, ā2, . . . , ām). Furthermore, let dH(a, b)
denote the Hamming distance, given by

dH(a, b) =
m∑

i=1

|ai − bi|

for all a, b ∈ {0, 1}m. Now, consider a joint probability distribution defined as
follows:

p(y) =

⎧
⎨

⎩

1
m+2 + δ if y = am
1

m+2 − δ
m+1 if dH(y, ām) ≤ 1

0 otherwise
,

where δ > 0. Hence, we obtain:

EYLH(Y, h∗
s(x)) =

1
m + 2

− δ

m + 1
+ m

( 1
m + 2

− δ

m + 1
)m − 1

m
,

EYLH(Y, h∗
H(x)) =

1
m + 2

+ δ + m
( 1
m + 2

− δ

m + 1
) 1
m

.

The difference is then given by

EYLH(Y, h∗
s(x)) − EYLH(Y, h∗

H(x)) =
m − 2
m + 2

− δ
(m − 1
m + 1

+ 1
)
.

Since this holds for any δ > 0, the regret is close to the bound. ��
As we can see, the regret is quite high in both cases, suggesting that a single
classifier will not be able to perform equally well in terms of both loss functions.
Instead, a classifier specifically tailored for the Hamming (subset 0/1) loss will
indeed perform much better for this loss than a classifier trained to minimize
the subset 0/1 (Hamming) loss.

3.4 Summary and Implications of Theoretical Results

Our theoretical results so far can be summarized as follows:

– The risk minimizers of Hamming and subset 0/1 loss have a different struc-
ture: In the latter case, the minimizer is the mode of a joint distribution on
the label space, whereas in the former, it is a combination of the modes of
(one-dimensional) marginal distributions.

– Under specific conditions, these two types of loss minimizers are provably
equivalent, though in general, they will produce different predictions.

– The Hamming loss is upper-bounded by the subset 0/1 loss, which in turn
is bounded by the Hamming loss multiplied by the number of labels m.
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– Minimization of the subset 0/1 loss may cause a high regret for the Hamming
loss and vice versa.

These results have a number of implications, not only from a theoretical but also
from a methodological and empirical point of view:

– The idea to exploit label dependencies, one of the main research topics in
MLC, should be reconsidered in a careful way, distinguishing the two types
of dependence mentioned above. The conditional dependence, for example,
is arguably more related to non-decomposable (with respect to labels) losses
like subset 0/1 loss than to decomposable ones like Hamming. This distinc-
tion is largely ignored in papers on that topic.

– A careful distinction between loss functions seems to be even more important
for MLC than for standard classification, and one cannot expect the same
MLC method to be optimal for different types of losses. Surprisingly, new
methods are often proposed without explicitly saying what loss they intend
to minimize. Instead, they are typically shown to perform well across a wide
spectrum of different loss functions, casting some doubts on the reliability
of such studies.

4 Experimental Studies

To corroborate our theoretical results by means of empirical evidence, this sec-
tion presents a number of experimental studies, using both synthetic and bench-
mark data. As MLC methods, two meta-techniques will be employed, namely
the Binary Relevance (BR) and the Label Power-set (LP) classifier. These meth-
ods are commonly used as baselines in experimental studies and are of a quite
complementary nature [4]. Besides, we will also propose a simple modification
of LP that allows for adapting this approach to any loss function. We present
results on three artificial data sets pointing to some important pitfalls often en-
countered in experimental studies of MLC. Finally, we present some results on
benchmark data sets and discuss them in the light of these pitfalls.

In the experimental study, we used the WEKA [14] and Mulan [6] packages.

4.1 Binary Relevance and Label Power-Set Classifier

BR is arguably the simplest approach to MLC. It trains a separate binary clas-
sifier hi(·) for each label λi. Learning is performed independently for each label,
ignoring all other labels. At prediction time, a query instance x is submitted to
all binary classifiers, and their outputs are combined into an MLC prediction.

Obviously, BR is tailored for Hamming loss minimization or, more generally,
every loss whose risk minimizer can be expressed solely in terms of marginal
distributions; as shown in [7], this also includes the rank loss. However, BR does
not take label dependence into account, neither conditional nor unconditional,
and this is what it is most often criticized for. Indeed, as suggested by our theo-
retical results, BR will in general not be able to yield risk minimizing predictions
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for losses like subset 0/1. Moreover, one may suspect that, even though it can
minimize Hamming loss theoretically, exploiting label dependencies may still be
beneficial practically.

LP reduces the MLC problem to multi-class classification, considering each
label subset L ∈ L as a distinct meta-class. The number of these meta-classes
may become as large as |L| = 2m, although it is often reduced considerably by
ignoring label combinations that never occur in the training data. Nevertheless,
the large number of classes produced by this reduction is generally seen as the
most important drawback of LP.

Since prediction of the most probable meta-class is equivalent to prediction
of the mode of the joint label distribution, LP is tailored for the subset 0/1
loss. Interestingly, however, it can easily be extended to any other loss function,
given that the underlying multi-class classifier f(·) does not only provide a class
prediction but a reasonable estimate of the probability of all meta-classes (label
combinations), i.e., f(x) ≈ px(Y). Given a loss function L(·) to be minimized,
an optimal prediction can then be derived in an explicit way:

h∗(x) = argmin
y

EY|XL(Y, y)

In particular, LP can be improved for the Hamming loss, simply by computing
the marginal distributions and combining the marginal modes into a single MLC
prediction. In this regard, we note that computing margins is not harder than
searching the mode of px(Y). We refer to this modification of LP as LP+.

Practically, we improve LP+ by regularizing the (joint) probability estimation.
To this end, we make use of shrinking. In Bayesian inference, it is well-known
that the estimated parameters are shrunk toward the prior distribution. We
mimic such kind of shrinkage by means of a regularized probability estimate:

p̃x(y) = αp̂x(y) + (1 − α)p̂(y),

where p̂x(y) is given by LP, p̂(y) is a prior estimated from the training data,
and α is the shrinkage parameter. This parameter can be determined empirically
so as to maximize performance on the test set: For given α, the accuracy of the
classifier is estimated on a validation set, and an optimal α is found through
line-search. In the following, we use α = 0.95.

4.2 Artificial Data

We consider three artificial data sets, each one reflecting a typical situation for
MLC. In each case, we generated 30 training and testing folds, each containing
1000 instances.

The first data set represents the case of conditional independence. Data are
drawn uniformly from the square x ∈ [−0.5, 0.5]2. The label distribution is
given by the product of the marginal distributions defined by px(yi) = 1

/
(1 +

exp(−fi(x)), where the fi are linear functions: f1(x) = x1+x2, f2(x) = −x1+x2,
f3(x) = x1−x2. The cardinality of labels (the average number of relevant labels
for an instance) is 1.503.
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In the second data set, the labels are dependent. Data are drawn from the
univariate uniform distribution x ∈ [−0.5, 0.5]. The joint distribution is obtained
by applying the product rule of probability:

px(Y) = px(Y1)
3∏

i=2

px(Yi|Y1, . . . , Yi−1),

where the probabilities are modeled by linear functions in a similar way as before:
f1(x) = x, f2(y1, x) = −x − 2y1 + 1, f3(y2, y1, x) = x + 12y1 − 2y2 − 11. The
cardinality of labels for this data set is 1.314.

The results of the experiment are reported for both data sets in Table 1. All
approaches are used with linear support vector machine as base learner. In the
case of LP+, we used the approach of [15] to turn SVM scores into probabil-
ities, thus obtaining an estimation of the joint distribution and its marginals.
Since the true data generating process is known, we also report the loss of the
Bayes-optimal classifier. In the case of the independent data, we observe that
both approaches perform equally well in terms of both loss functions. For the
dependent data, however, we see that BR and LP are tailored toward differ-
ent loss functions. As expected, the former performs well in terms of Hamming
loss, whereas the latter is superior in terms of subset 0/1 loss. As expected,
LP+ is able to adapt to both loss functions. Overall, the results are in complete
agreement with our theoretical findings.

Table 1. Results on two artificial data sets: conditionally independent (left) and con-
ditionally dependent (right). Standard errors are given in parentheses.

Conditional independence Conditional dependence
classifier Hamming loss subset 0/1 loss Hamming loss subset 0/1 loss

BR 0.4208(.0014) 0.8088(.0020) 0.3900(.0015) 0.7374(.0021)
LP 0.4212(.0011) 0.8101(.0025) 0.4227(.0019) 0.6102(.0033)
LP+ 0.4181(.0013) 0.8093(.0021) 0.3961(.0033) 0.6135(.0034)

B-O 0.4162 0.8016 0.3897 0.6029

In the literature, LP is often shown to outperform BR even in terms of Ham-
ming loss. Given our results so far, this is somewhat surprising and calls for
an explanation. We argue that results of that kind should be considered with
caution, mainly because a meta learning technique (such as BR and LP) must
always be considered in conjunction with the underlying base learner. In fact,
differences in performance should not only be attributed to the meta but also
to the base learner. In particular, since BR uses binary and LP multi-class clas-
sification, they are typically applied with different base learners, and hence are
not directly comparable.

We illustrate this by means of an example. For simplicity, suppose that data is
generated without noise (whence the risk of the Bayes optimal classifier for both



292 K. Dembczyński et al.

Hamming and subset 0/1 loss is 0), and consider a problem with two-dimensional
instances x = (x1, x2) ∈ X = [−1, 1]2 and two labels: y1 = �x1 < 0� and y2 =
�x1 > 0� � �x2 > 0�, where � is the exclusive (logical) disjunction. Obviously,
using a linear base learner, BR is not able to solve this problem properly, whereas
LP, using a multi-class extension of the linear support vector machine (based on
a one-vs-one decomposition) yields almost perfect predictions. However, this
multi-class extension is no longer a truly linear classifier. Instead, several linear
classifiers are wrapped in a decomposition and an aggregation procedure, yielding
a more complex classifier that can produce non-linear decision boundaries. And
indeed, giving BR access to a more complex base learner, like a rule ensemble
[16], it is able to solve the problem equally well; see results and the scatter plot
of data in Fig. 1.
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classifier Hamming subset 0/1
loss loss

BR Linear SVM 0.2399(.0097) 0.4751(.0196)
BR MLRules 0.0011(.0002) 0.0020(.0003)
LP Linear SVM 0.0143(.0020) 0.0195(.0011)

B-O 0 0

Fig. 1. Plot of the data set composed of two labels: the first label is obtained by a
linear model, while the second label represents the exclusive disjunction. The table
contains results of three classifiers on this data set.

4.3 Benchmark Data

The second part of the experiments was performed on a collection of 8 MLC
data sets.2 In the case of the Reuters data, we used the preprocessed version as
in [5]. A summary of the data sets and their properties are given in Table 2.

Table 2. Data sets used in the experiment

data set # inst. # attr. # labels card. data set # inst. # attr. # labels card.

image 2000 135 5 1.236 yeast 2417 103 14 4.237
scene 2407 294 6 1.074 genbase 662 1186 27 1.252
emotions 593 72 6 1.868 slashdot 3782 1079 22 1.181
reuters 7119 243 7 1.241 medical 978 1449 45 1.245

2 Data sets are taken from http://mlkd.csd.auth.gr/multilabel.html and
http://www.cs.waikato.ac.nz/~jmr30/#datasets

http://mlkd.csd.auth.gr/multilabel.html
http://www.cs.waikato.ac.nz/~jmr30/#datasets
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Table 3. Results for Hamming loss. Ranks of classifiers are given in parentheses

BR SVM BR MLRules LP+ pSVM LP pSVM LP SVM

image 0.1980 (4) 0.1928(2) 0.1888(1) 0.2021(5) 0.1954(3)
scene 0.1071 (5) 0.0871(1) 0.0919(3) 0.0950(4) 0.0891(2)
emotions 0.2049 (1) 0.2080(2) 0.2091(3) 0.2232(5) 0.2119(4)
reuters 0.0663 (5) 0.0479(1) 0.0565(2) 0.0596(3) 0.0628(4)
yeast 0.2016 (1) 0.2086(3) 0.2156(4) 0.2523(5) 0.2075(2)
genbase 0.0008 (1) 0.0015(5) 0.0011(3) 0.0012(4) 0.0010(2)
slashdot 0.0480 (2) 0.0402(1) 0.0534(4) 0.0631(5) 0.0481(3)
medical 0.0102 (1) 0.0106(2) 0.0132(4) 0.0135(5) 0.0115(3)

Avg. Rank 2.7 2.1 2.75 4.25 3.2

Table 4. Results for subset 0/1 loss. Ranks of classifiers are given in parentheses

BR SVM BR MLRules LP+ pSVM LP pSVM LP SVM

image 0.7670 (5) 0.6705(4) 0.5595(2) 0.5600(3) 0.5315(1)
scene 0.4757 (5) 0.4221(4) 0.3299(2) 0.3303(3) 0.3008(1)
emotions 0.7538 (4) 0.7622(5) 0.7353(2) 0.7386(3) 0.6846(1)
reuters 0.3735 (5) 0.2684(4) 0.2391(1) 0.2406(2) 0.2676(3)
yeast 0.8552 (4) 0.8643(5) 0.8155(2) 0.8159(3) 0.7460(1)
genbase 0.0211 (1.5) 0.0332(5) 0.0257(3.5) 0.0257(3.5) 0.0211(1.5)
slashdot 0.6560 (2) 0.6721(3) 0.6819(4) 0.6835(5) 0.5460(1)
medical 0.3405 (2) 0.3497(3) 0.3630(4.5) 0.3630(4.5) 0.3119(1)

Avg. Rank 3.56 4.13 2.63 3.38 1.31

We used BR and LP with linear support vector machines as base learner,
and additionally BR with MLRules and LP+ based on the probabilistic SVM.
Results of a 3-fold cross-validation are given for Hamming loss in Table 3 and for
subset 0/1 loss in Table 4. Overall, the results are again in agreement with our
expectations. In particular, LP achieves better results for the subset 0/1 loss,
while BR is on average superior in terms of Hamming loss.

Let us have a closer look at the results for the scene data set. As reported
in [17], LP outperforms BR on this data set in terms of Hamming loss; both
methods were used with linear SVM as base learner. Although our results here
give the same picture, note that BR with MLRules outperforms both approaches.
As pointed out above, comparing LP and BR with the same base learner is
questionable and may lead to unwarranted conclusions.

Let us underline that LP+ outperforms LP using probabilistic SVM in terms
of the Hamming loss on all datasets. This confirms our theoretical claims and
justifies the modification of LP. Also shrinking used in LP+ improves the results
for the subset 0/1 loss. However, let us notice that probabilistic SVM performs
worse than classical SVM in the case of classification. We can observe that, in
terms of the subset 0/1 loss, the latter is much better than the former. Moreover,
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the latter receives good results for Hamming loss minimization on some data sets.
We suppose that, for these data sets, one of the conditions that imply equivalence
of the risk minimizers will hold (cf. Proposition 1).

5 Conclusions

In this paper, we have addressed a number of issues related to loss minimization
in multi-label classification. In our opinion, this topic has not received enough
attention so far, despite the increasing interest in MLC in general. However,
as we have argued in this paper, empirical studies of MLC methods are often
meaningless or even misleading without a careful interpretation, which in turn
requires a thorough understanding of underlying theoretical conceptions.

In particular, by looking at the current literature, we noticed that papers
proposing new methods for MLC, and for exploiting label dependencies, rarely
distinguish between the type of loss function to be minimized. Instead, a new
method is often shown to be better than existing ones “on average”, evaluating on
a number of different loss functions. Our technical results in this paper, already
summarized in Section 3.4 and therefore not repeated here, indicate that studies
of that kind might be less illuminative than they could be. First, we have shown
that the type of loss function has a strong influence on whether or not, and
perhaps to what extent, an exploitation of conditional label dependencies can
be expected to yield a true benefit. Consequently, some loss functions will be
more suitable than others for showing the benefit of label dependencies. Second,
using the example of Hamming and subset 0/1 loss, we have shown that loss
functions in MLC cover a broad spectrum, and that minimizing different losses
will normally require different estimators. Consequently, one cannot expect an
MLC method to perform equally well for various losses of different type.

Our focus on Hamming and subset 0/1 loss can be justified by their comple-
mentarity, and by noting that these losses can be considered representative of
decomposable and non-decomposable loss functions, respectively. Besides, they
are among the most well-known and frequently used performance measures in
MLC. Nevertheless, looking at other loss functions is of course worthwhile and
holds the promise to gain further insight into the nature of MLC. Expanding
our studies in this direction is therefore on our agenda for future work.
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S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp.
406–417. Springer, Heidelberg (2007)


	Regret Analysis for Performance Metrics in Multi-Label Classification: The Case of Hamming and Subset Zero-One Loss
	Introduction
	Multi-Label Classification
	Problem Statement
	Label Dependence
	Loss Functions

	Analysis of Hamming and Subset 0/1 Loss
	Risk Minimization
	Bound Analysis
	Regret Analysis
	Summary and Implications of Theoretical Results

	Experimental Studies
	Binary Relevance and Label Power-Set Classifier
	Artificial Data
	Benchmark Data

	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




