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Abstract. This paper makes a first step toward the integration of two
subfields of machine learning, namely preference learning and reinforce-
ment learning (RL). An important motivation for a “preference-based”
approach to reinforcement learning is a possible extension of the type of
feedback an agent may learn from. In particular, while conventional RL
methods are essentially confined to deal with numerical rewards, there
are many applications in which this type of information is not naturally
available, and in which only qualitative reward signals are provided in-
stead. Therefore, building on novel methods for preference learning, our
general goal is to equip the RL agent with qualitative policy models, such
as ranking functions that allow for sorting its available actions from most
to least promising, as well as algorithms for learning such models from
qualitative feedback. Concretely, in this paper, we build on an existing
method for approximate policy iteration based on roll-outs. While this
approach is based on the use of classification methods for generalization
and policy learning, we make use of a specific type of preference learning
method called label ranking. Advantages of our preference-based policy
iteration method are illustrated by means of two case studies.

1 Introduction

Standard methods for reinforcement learning (RL) assume feedback to be spec-
ified in the form of real-valued rewards. While such rewards are naturally gen-
erated in some applications, there are many cases in which precise numerical
information is difficult to extract from the environment, or in which the spec-
ification of such information is largely arbitrary—as a striking though telling
example, to which we shall return in Section 5, consider assigning a negative
reward of −60 to the death of the patient in a medical treatment [17]. The quest
for numerical information, even if accomplishable in principle, may also compro-
mise efficiency in an unnecessary way. In a game playing context, for example, a
short look-ahead from the current state may reveal that an action a is most likely
superior to an action a′; however, the precise numerical gains are only known at
the end of the game. Moreover, external feedback, which is not produced by the
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environment itself but, say, by a human expert (e.g., “In this situation, action a
would have been better than a′”), is typically of a qualitative nature, too.

In order to make RL more amenable to qualitative feedback, we build upon
formal concepts and methods from the rapidly growing field of preference learn-
ing [5]. Roughly speaking, we consider the RL task as a problem of learning
the agent’s preferences for actions in each possible state, that is, as a problem
of contextualized preference learning (with the context given by the state). In
contrast to the standard approach to RL, the agent’s preferences are not nec-
essarily expressed in terms of a utility function. Instead, more general types of
preference models, as recently studied in preference learning, can be envisioned,
such as total and partial order relations.

Interestingly, this approach is in a sense in-between the two extremes that
have been studied in RL so far, namely learning numerical utility functions for
all actions (as in Q-learning [15]) and, on the other hand, directly learning a
policy which predicts a single best action in each state [11]. One may argue that
the former approach is unnecessarily complex, since precise utility degrees are
actually not necessary for taking optimal actions, whereas the latter approach
is not fully effectual, since a prediction in the form of a single action does nei-
ther suggest alternative actions nor offer any means for a proper exploration.
An order relation on the set of actions seems to provide a reasonable compro-
mise, as it supports the exploration of acquired knowledge, i.e., the selection of
(presumably) optimal actions, as well as the exploration of alternatives, i.e., the
selection of suboptimal but still promising actions.

In this paper, we make a first step toward the integration of preference learn-
ing and reinforcement learning. We build upon a policy learning approach called
approximate policy iteration, which will be detailed in Section 2, and propose
a preference-based variant of this algorithm (Section 3). While the original ap-
proach is based on the use of classification methods for generalization and pol-
icy learning, we employ label ranking algorithms for incorporating preference
information. Advantages of our preference-based policy iteration method are
illustrated by means of two case studies presented in Sections 4 and 5.

2 Approximate Policy Iteration

Conventional reinforcement learning assumes a scenario in which an agent moves
through a (finite) state space S by repeatedly selecting actions from a set of
actions A = {a1, . . . ,ak}. A Markovian state transition function δ : S × A →
P(S), where P(S) denotes the set of probability distributions over S, randomly
takes the agent to a new state, depending on the current state and the chosen
action. Occasionally, the agent receives feedback about its actions in the form
of a reward signal r : S ×A→ R, where r(s, a) is the reward the agent receives
for performing action a in state s. The goal of the agent is to choose its actions
so as to maximize its expected total reward.

The most common task is to learn a policy π : S → A that prescribes the
agent how to act optimally in each situation (state). More specifically, the goal
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is often defined as maximizing the expected sum of rewards (given the initial
state s), with future rewards being discounted by a factor γ ∈ [0, 1]:

V π(s) = E

[ ∞∑
t=0

γtr(st, π(st)) | s0 = s

]
(1)

where (s0, s1, s2, . . .) is a trajectory of π through the state space. With V ∗(s)
the best possible value that can be achieved for (1), a policy is called optimal
if it achieves the best value in each state s. Thus, one possibility to learn an
optimal policy is to learn an evaluation of states in the form of a value function
[12], or to learn a so-called Q-function which returns the expected reward for a
given state-action pair [15]:

Qπ(s, a) = r(s, a) + γ · V π(δ(s, a))

Instead of determining optimal actions indirectly through learning the value
function or the Q-function, one may try to learn a policy directly in the form of
a mapping from states to actions. Approaches following this line include actor-
critic algorithms, which learn both the value function (the critic) and an explicit
policy (the actor) simultaneously [1,10,2], and policy gradient methods, which
search for a good parameter setting in a space of parametrized policies [16,9,13].

A particularly interesting approach is approximate policy iteration with roll-
outs [11,3]. The key idea of this approach is to use a generative model of the
underlying process to perform simulations that in turn allow for approximating
the value of an action in a given state (Algorithm 1). To this end, the action is
performed, resulting in a state s1 = δ(s,a). The value of this state is estimated
by performing so-called roll-outs, i.e., by repeatedly selecting actions following a
policy π for at most T steps, and finally accumulating the observed rewards. This
is repeated K times and the average reward over these K roll-outs is returned
as an approximate Q-value Q̃π(s0,a) for taking action a in state s0 (leading to
s1) and following policy π thereafter.

These roll-outs are then used in a policy iteration loop (Algorithm 2), which
iterates through each state, simulates all actions in this state, and determines
the action a∗ that promises the highest Q-value. If a∗ is significantly better than
all alternative actions in this state (indicated with the symbol >T in line 10), a
training example (s, a∗) is added to a training set T . Eventually, T is used to
directly learn a mapping from states to actions, which forms the new policy π′.
This process is repeated several times, until some stopping criterion is met (e.g.,
if the policy does not improve from one iteration to the next).

We should note some minor differences between the version presented in
Algorithm 2 and the original formulation [11]. Most notably, the training set
here is formed as a multi-class training set, whereas in [11] it was formed as a
binary training set, learning a binary policy predicate π̂ : S × A → {0, 1}. We
chose the more general multi-class representation because, as we will see in the
following, it lends itself to an immediate generalization to a ranking scenario.
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Algorithm 1. Rollout(E, s1, γ, π,K, T ): Estimation of state-action values
Require: generative environment model E, sample state s0, discount factor γ, policy
π, number of trajectories/roll-outs K, max. length/horizon of each trajectory T

for k = 1 to K do
s ← s1, Q̃k ← 0, t← 1
while t < T and ¬TerminalState(s) do
(s′, r) ← Simulate(E, s, π(s))
Q̃k ← Q̃k + γ

tr
s ← s′, t← t+ 1

end while
end for

Q̃ = 1
K

∑K
k=1 Q̃k

return Q̃

3 Preference-Based Reinforcement Learning

The key idea of our approach is to replace the (quantitative) evaluation of in-
dividual actions by the (qualitative) comparison between pairs of actions. Com-
parisons of that kind are in principle enough to make optimal decisions. Besides,
they are often more natural and less difficult to acquire, especially in applica-
tions where the environment does not provide numerical rewards in a natural
way. As will be seen later on, comparing pairs instead of evaluating individual
actions does also have a number of advantages from a learning point of view.

The basic piece of information we consider is a pairwise preference of the
form ai �s aj or, more specifically, ai �π

s aj , suggesting that in state s, taking
action ai (and following policy π afterward) is better than taking action aj .
A preference of this kind can be interpreted in different ways. For example,
assuming the existence of an underlying (though not necessarily known) reward
function, it may simply mean that Qπ(s,ai) > Qπ(s,aj).

Evaluating a trajectory t = (s0, s1, s2, . . .) in terms of its (expected) total
reward reduces the comparison of trajectories to the comparison of real numbers;
thus, comparability is enforced and a total order on trajectories is induced.
More generally, and arguably more in line with the idea of qualitative feedback,
one may assume a partial order relation � on trajectories, which means that
trajectories t and t′ can also be incomparable. A contextual preference can then
be defined as follows:

ai �π
s aj ⇔ P(t(ai) � t(aj)) > P(t(aj) � t(ai)) ,

where t(ai) denotes the (random) trajectory produced by taking action ai in
state s0 and following π thereafter, and P(t � t′) is the probability that trajec-
tory t is preferred to t′. An in-depth discussion of this topic is beyond the scope
of this paper, however, an example in which � is a Pareto-dominance relation
will be presented in Section 5.
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Algorithm 2. Multi-class variant of Approx. Policy Iteration with Roll-Outs[11]
Require: generative environment model E, sample states S, discount factor γ, initial

(random) policy π0, number of trajectories/roll-outs K, max. length/horizon of
each trajectory T , max number of policy iterations p

1: π′ ← π0

2: repeat
3: π ← π′, T ← ∅
4: for each s ∈ S do
5: for each a ∈ A do
6: (s′, r) ← Simulate(E,s,a) # do (possibly off-policy) action a
7: Q̃π(s,a) ← Rollout(E, s′, γ, π,K, T ) + r # estimate state-action value
8: end for

9: a∗ ← argmaxa∈A Q̃π(s,a)
10: if Q̃π(s, a∗) >T Q̃

π(s,a) for all a ∈ A,a �= a∗ then
11: T ← T ∪ {(s,a∗)}
12: end if

13: end for
14: π′ ← learn(T )
15: until StoppingCriterion(E,π, π′, p)

In order to realize our idea of preference-based approximate policy iteration,
to be detailed in Section 3.2 below, we need a learning method that induces a
suitable preference model on the basis of training information in the form of
pairwise preferences of the above kind. Ideally, given a state, the model allows
one to rank the possible actions from (presumably) most to least desirable. A
setting nicely matching these requirements is the setting of label ranking.

3.1 Label Ranking

Like in the conventional setting of supervised learning (classification), assume
to be given an instance space X and a finite set of labels Y = {y1, y2, . . . , yk}.
In label ranking, the goal is to learn a “label ranker” in the form of an X → SY

mapping, where the output space SY is given by the set of all total orders
(permutations) of the set of labels Y . Thus, label ranking can be seen as a
generalization of conventional classification, where a complete ranking

yτ−1
x (1) �x yτ−1

x (2) �x . . . �x yτ−1
x (k)

is associated with an instance x instead of only a single class label. Here, τx is
a permutation of {1, 2, . . . , k} such that τx(i) is the position of label yi in the
ranking associated with x.

The training data T used to induce a label ranker typically consists of a set
of pairwise preferences of the form yi �x yj , suggesting that, for instance x, yi
is preferred to yj . In other words, a single “observation” consists of an instance
x together with an ordered pair of labels (yi, yj).
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Several methods for label ranking have already been proposed in the literature;
we refer to [14] for a comprehensive survey. The idea of learning by pairwise
comparison (LPC) [8] is to train a separate model Mi,j for each pair of labels
(yi, yj) ∈ Y × Y , 1 ≤ i < j ≤ k; thus, a total number of k(k − 1)/2 models is
needed. At classification time, a query x is submitted to all models, and each
predictionMi,j(x) is interpreted as a vote for a label. More specifically, assuming
scoring classifiers that produce normalized scores fi,j = Mi,j(x) ∈ [0, 1], the
weighted voting technique interprets fi,j and fj,i = 1− fi,j as weighted votes for
classes yi and yj , respectively, and predicts the class y∗ with the highest sum of
weighted votes, i.e., y∗ = arg maxi

∑
j �=i fi,j . We refer to [8] for a more detailed

description of LPC in general and a theoretical justification of the weighted
voting procedure in particular.

3.2 Preference-Based Approximate Policy Iteration

Recall the scenario described at the end of Section 2, where the agent has access
to a generative model E, which takes a state s and an action a as input and
returns a successor state s′ and the reward r(s,a). As in [11], this scenario is
used for generating training examples via roll-outs, i.e., by using the generative
model and the current policy π for generating a training set T , which is used for
training a multi-class classifier that can be used as a policy.

Following our idea of preference-based RL, we train a label ranker instead of
a classifier : Using the notation from Section 3.1 above, the instance space X
is given by the state space S, and the set of labels Y corresponds to the set of
actions A. Thus, the goal is to learn a mapping S → SA, which maps a given
state to a total order (permutation) of the available actions. In other words,
the task of the learner is to learn a function that is able to rank all available
actions in a state. The training information is provided in the form of binary
action preferences of the form (s,ak � aj), indicating that in state s, action ak
is preferred to action aj .

From a training point of view, a key advantage of this approach is that pairwise
preferences are much easier to elicit than examples for unique optimal actions.
Our experiments in Sections 4 and 5 utilize this in different ways.

Section 4 demonstrates that a comparison of only two actions is less difficult
than “proving” the optimality of one among a possibly large set of actions, and
that, as a result, our preference-based approach better exploits the gathered
training information. Indeed, the procedure proposed in [11] for forming train-
ing examples is very wasteful with this information. An example (s, a∗) is only
generated if a∗ is “provably” the best action among all candidates, namely if it
is (significantly) better than all other actions in the given state. Otherwise, if
this superiority is not confirmed by a statistical hypothesis test, all information
about this state is ignored. In particular, no training examples would be gen-
erated in states where multiple actions are optimal, even if they are clearly better
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than all remaining actions.1 For the preference-based approach, on the other
hand, it suffices if only two possible actions yield a clear preference in order to
obtain (partial) training information about that state. Note that a corresponding
comparison may provide useful information even if both actions are suboptimal.

In Section 5, an example will be shown in which actions are not necessarily
comparable, since the agent seeks to optimize multiple criteria at the same time
(and is not willing to aggregate them into a one-dimensional target). In general,
this means that, while at least some of the actions will still be comparable in a
pairwise manner, a unique optimal action does not exist.

Regarding the type of prediction produced, it was already mentioned earlier
that a ranking-based reinforcement learner can be seen as a reasonable compro-
mise between the estimation of a numerical utility function (like in Q-learning)
and a classification-based approach which provides only information about the
optimal action in each state: The agent has enough information to determine
the optimal action, but can also rely on the ranking in order to look for alter-
natives, for example to steer the exploration towards actions that are ranked
higher. We will briefly return to this topic at the end of the next section. Before
that, we will discuss the experimental setting in which we evaluate the utility of
the additional ranking-based information.

4 Case Study I: Exploiting Action Preferences

In this section, we compare three variants of approximate policy iteration follow-
ing Algorithm 2. They only differ in the way in which they use the information
gathered from the performed roll-outs.

Approximate Policy Iteration (API) generates one training example (s, a∗)
if a∗ is the best available action in s, i.e., if Q̃π(s,a∗) >T Q̃π(s,a) for all
a �= a∗. If there is no action that is better than all alternatives, no training
example is generated for this state.

Pairwise Approximate Policy Iteration (PAPI) works in the same way as
API, but the underlying base learning algorithm is replaced with a label
ranker. This means that each training example (s,a∗) of API is transformed
into a− 1 training examples of the form (s,a∗ � a) for all a �= a∗.

Preference-Based Policy Iteration (PBPI) is trained on all available pair-
wise preferences, not only those involving the best action. Thus, whenever
Q̃π(s,ak) >T Q̃π(s,al) holds for a pair of actions (ak,al), PBPI generates a
corresponding training example (s,ak � al). Note that, contrary to PAPI,
ak does not need to be the best action. In particular, it is not necessary that
there is a clear best action in order to generate training examples. Thus, from
the same roll-outs, PBPI will typically generate more training information
than PAPI or API.

1 In the original formulation as a binary problem, it is still possible to produce nega-
tive examples, which indicate that the given action is certainly not the best action
(because it was significantly worse than the best action).
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4.1 Application Domains

Following [3], we evaluated these variants on two well-known problems, inverted
pendulum and mountain car. We will briefly recapitulate these tasks, which were
used in their default setting, unless stated otherwise.

In the inverted pendulum problem, the task is to push or pull a cart so that
it balances an upright pendulum. The available actions are to apply a force of
fixed strength of 50 Newton to the left (-1), to the right (+1) or to apply no
force at all (0). The mass of the pole is 2 kg and of the cart 9 kg. The pole
has a length of 0.5 m and each time step is set to 0.1 seconds. Following [3], we
describe the state of the pendulum using only the angle and angular velocity
of the pole, ignoring the position and the velocity of cart. For each time step,
where the pendulum is above the horizontal line, a reward of 1 was given, else 0.
A policy was considered sufficient, if it is able to balance the pendulum longer
than 1000 steps (100 sec). The random samples in this setting were generated
by simulating a uniform random number (max 100) of uniform random actions
from the initial state (pole straight up, no velocity for cart and pole). If the
pendulum fell within this sequence, the procedure was repeated.

In the mountain car problem, the task is to drive a car out of a steep valley.
To do so, it has to repeatedly go up on each side of the hill, gaining momentum
by going down and up to the other side, so that eventually it can get out. Again,
the available actions are (−1) for left or backward and (+1) for right or forward
and (0) for a fixed level of throttle. The states or feature vectors consist of the
horizontal position and the current velocity of the car. Here, the agent received
a reward of -1 in each step until the goal was reached. A policy which needed
less than 75 steps to reach the goal was considered as sufficient.

4.2 Experimental Setup

In addition to these conventional formulations using three actions in each state,
we also used versions of these problems with 5, 9, and 17 actions, because in
these cases it becomes less and less likely that a unique best actions can be
found, and the benefit from being able to utilize information from states where
no clear winner emerges increases. The range of the original action set {−1, 0, 1}
was partitioned equidistantly into the given number of actions, for e.g., using 5
actions, the set of action signals is {−1,−0.5, 0, 0.5, 1}. Also, a uniform noise term
in [−0.2, 0.2] was added to the action signal, such that all state transitions are
non-deterministic. For training the label ranker we use LPC (cf. Section 3.1) with
simple multi-layer perceptrons (as implemented in the Weka machine learning
library [7] with its default parameters) as base classifiers. The discount factor
for both settings was set to 1 and the maximal length of the trajectory for the
inverted pendulum task was set to 1500 steps and 1000 for the mountain car task.
The policy iteration algorithms terminated if the learned policy was sufficient or
if the policy performance decreased or if the number of policy iterations reached
10. For the evaluation of the policy performance, 100 simulations beginning from
the corresponding initial states were utilized.
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For each task and method, we tried five numbers of state samples s ∈ {10, 20,
50, 100, 200}, five maximum numbers of roll-outs r ∈ {10, 20, 50, 100, 200}, and
three levels of significance c ∈ {0.025, 0.05, 0.1}. Each of the 5 × 5 × 3 = 75
parameter combinations was evaluated ten times, such that the total number of
experiments per learning task was 750. We tested both domains, mountain car
and inverted pendulum, with a ∈ {3, 5, 9, 17} different actions each.

Our prime evaluation measure is the success rate (SR), i.e., the percentage
of learned sufficient policies. Following [3], we plot a cumulative distribution of
the success rates of all different parameter settings over a measure of learning
complexity, where each point (x, y) indicates the minimum complexity x needed
to reach a success rate of y. However, while [3] simply use the number of roll-outs
(i.e., the number of sampled states) as a measure of learning complexity, we use
the number of performed actions over all roll-outs, which is a more fine-grained
complexity measure. The two would coincide if all roll-outs are performed a con-
stant number of times. However, this is typically not the case, as some roll-outs
may stop earlier than others. Thus, we generated graphs by sorting all successful
runs over all parameter settings (i.e., runs which yielded a sufficient policy) in
increasing order regarding the number of applied actions and by plotting these
runs along the x-axis with a y-value corresponding to its cumulative success rate.
This visualization can be interpreted roughly as the development of the success
rate in dependence of the applied learning complexity.

4.3 Complete State Evaluations

Figure 1 shows the results for the inverted pendulum and the mountain car tasks.
One can clearly see that for an increasing number of actions, PBPI reaches a
significantly higher success rate than the two alternative approaches, and it typ-
ically also has a much faster learning curve, i.e., it needs to take fewer actions to
reach a given success rate. Another interesting point is that the maximum success
level decreases with an increasing number of actions for API and PAPI, but it
remains essentially constant for PBPI. Overall, these results clearly demonstrate
that the additional information about comparisons of lower-ranked action pairs,
which is ignored in API and PAPI, can be put to effective use when approximate
policy iteration is extended to use a label ranker instead of a mere classifier.

4.4 Partial State Evaluations

So far, based on the API strategy, we always evaluated all possible actions at
each state, and generated preferences from their pairwise comparisons. A possible
advantage of the preference-based approach is that it does not need to evaluate
all options at a given state. In fact, one could imagine to select only two actions
for a state and compare them via roll-outs. While such a partial state evaluation
will, in general, not be sufficient for generating a training example for API, it
suffices to generate a training preference for PBPI. Thus, such a partial PBPI
strategy also allows for considering a far greater number of states, using the
same number of roll-outs, at the expense that not all actions of each state will
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Fig. 1. Comparison of API, PAPI and PBPI for the inverted pendulum task (left) and
the mountain car task (right). The number of actions is increasing from top to bottom.
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Fig. 2. Comparison of complete state evaluation (PBPI) with partial state evaluation
in three variants (PBPI-1, PBPI-2, PBPI-3)

be explored. Such an approach may thus be considered to be orthogonal to recent
approaches for roll-out allocation strategies [3,6].

In order to investigate this effect, we also experimented with three partial
variants of PBPI, which only differ in the number of states that they are allowed
to visit. The first (PBPI-1) allows the partial PBPI variant to visit only the
same total number of states as PBPI. The second (PBPI-2) adjusts the number
of visited sample states by multiplying it with k

2 , to account for the fact that
the partial variant performs only 2 action roll-outs in each state, as opposed to
k action roll-outs for PBPI. Thus, the total number of action roll-outs in PBPI
and PBPI-2 is constant. Finally, for the third variant (PBPI-3), we assume that
the number of preferences that are generated from each state is constant. While
PBPI generates up to k(k−1)

2 preferences from each visited state, partial PBPI
generates only one preference per state, and is thus allowed to visit k(k−1)

2 as
many states.

Figure 2 shows the results for the inverted pendulum with five different actions
(the results for the other problems are quite similar). The left graph shows the
success rate over the total number of taken actions, whereas the right graph
shows the success rate over the total number of training preferences. From the
right graph, no clear differences can be seen. In particular, the curves for PBPI-
3 and PBPI almost coincide. This is not surprising, because both generate the
same number of preference samples, albeit for different random states. However,
the left graph clearly shows that the exploration policies that do not generate all
action roll-outs for each state are more wasteful with respect to the total number
of actions that have to be taken in the roll-outs. Again, this is not surprising,
because evaluating all five actions in a state may generate up to 10 preferences
for a single state, or, in the case of PBPI-2, only a total of 5 preferences if 2
actions are compared in each of 5 states.

Nevertheless, the results demonstrate that partial state evaluation is feasible.
This may form the basis of novel algorithms for exploring the state space. For
example, it was suggested that a policy-based generation of states may be prefer-
able to a random selection [4]. While this may clearly lead to faster convergence
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in some domains, it may also fail to find optimal solutions in other cases [11].
Selecting a pair of actions and following the better one may be a simple but
effective way of trading off exploration and exploitation for state sampling. We
are currently working on a more elaborate investigation of this issue.

5 Case Study II: Learning from Qualitative Feedback

In a second experiment, we applied preference-based reinforcement learning to
a simulation of optimal therapy design in cancer treatment, using a model that
was recently proposed in [17]. In this domain, it is arguably more natural to
define preferences that induce a partial order between states than to define an
artificial numerical reward function that induces a total order between states.

5.1 Cancer Clinical Trials Domain

The model proposed in [17] captures a number of essential factors in cancer treat-
ment: (i) the tumor growth during the treatment; (ii) the patient’s (negative)
wellness, measured in terms of the level of toxicity in response to chemother-
apy; (iii) the effect of the drug in terms of its capability to reduce the tumor
size while increasing toxicity; (iv) the interaction between the tumor growth and
patient’s wellness. The two state variables, the tumor size S and the toxicity
X , are modeled using a system of difference equations: St+1 = St + ΔSt and
Xt+1 = Xt+ΔXt, where the time variable t denotes the number of months after
the start of the treatment and assumes values t = 0, 1, . . . , 6. The terms ΔS and
ΔX indicate the increments of the state variables that depend on the action,
namely the dosage level D:

ΔSt =
[
a1 ·max(Xt, X0)− b1 · (Dt − d1)

]
× 1(St > 0)

ΔXt = a2 ·max(St, S0) + b2 · (Dt − d2)
(2)

These changing rates produce a piecewise linear model over time. We fix the
parameter values following the recommendation of [17]: a1 = 0.15, a2 = 0.1, b1 =
b2 = 1.2 and d1 = d2 = 0.5. By using the indicator term 1(St > 0), the model
assumes that once the patient has been cured, namely the tumor size is reduced
to 0, there is no recurrence. Note that this system does not reflect a specific
cancer but rather models the generic development of the chemotherapy process.

The possible death of a patient in the course of a treatment is modeled by
means of a hazard rate model. For each time interval (t − 1, t], this rate is
defined as a function of tumor size and toxicity: λ(t) = exp (c0 + c1St + c2Xt),
where c0, c1, c2 are cancer-dependent constants. Again following [17], we let c0 =
−4, c1 = c2 = 1. By setting c1 = c2, the tumor size and the toxicity have an
equally important influence on patient’s survival. The probability of the patient’s
death during the time interval (t− 1, t] is calculated as

Pdeath = 1− exp
[
−

∫ t

t−1

λ(x) dx
]
.
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Fig. 3. Illustration of the simulation model showing the patient’s status during the
treatment. The initial tumor size is 1.5 and the initial toxicity is 0.5. On the x-axis is
the month with the corresponding dosage level the patient receives. The dosage levels
are selected randomly.

5.2 A Preference-Based Approach

The problem is to learn an optimal treatment policy π mapping states (S,X)
to actions in the form of a dosage level D, where the dosage level is a num-
ber between 0 and 1 (minimum and maximum dosage, respectively). In [17],
the authors tackle this problem by means of RL, and indeed obtained interest-
ing results. However, using standard RL techniques, there is a need to define a
numerical reward function depending on the tumor size, wellness, and possibly
the death of a patient. More specifically, four threshold values and eight util-
ity scores are needed, and the authors themselves notice that these quantities
strongly influence the results.

We consider this as a key disadvantage of the approach, since in a medical
context, a numerical function of that kind is extremely hard to specify and will
always be subject to debate. Just to give a striking example, the authors defined
a negative reward of −60 for the death of a patient, which, of course, is a rather
arbitrary number. As an interesting alternative, we tackle the problem using a
more qualitative approach.

To this end, we treat the criteria (tumor size, wellness, death) independently
of each other, without the need to aggregate them in a mathematical way; in fact,
the question of how to “compensate” or trade off one criterion against another
one is always difficult, especially in fields like medicine. Instead, we compare
two policies π and π′ as follows: π � π′ if the patient survives under π but not
under π′, and both policies are incomparable if the patient does neither survive
under π nor under π′. Otherwise, if the patient survives under both policies,
let CX denote the maximal toxicity during the 6 months of treatment under π
and, correspondingly, C′

X under treatment π′. Likewise, let CS and C′
S denote

the respective size of the tumor at the end of the therapy. Then, we define
preference via Pareto dominance as

π � π′ ⇔ (CX ≤ C′
X) and (CS ≤ C′

S) (3)
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It is important to remark that � thus defined, as well as the induced strict order
�, are only partial order relations. In other words, it is thoroughly possible that
two policies are incomparable. For our preference learning framework, this means
that less pairwise comparisons may be generated as training examples. However,
in contrast to standard RL methods as well as the classification approach of [11],
this is not a conceptual problem. In fact, since these approaches are based on a
numerical reward function and, therefore, implicitly assume a total order among
policies (and actions in a state), they are actually not applicable in the case of
a partial order.

5.3 Experimental Setup and Results

For training, we generate 1000 patients at random. That is, we simulate 1000
patients experiencing the treatment based on model (2). The initial state of
each patient, S0 and X0, are generated independently and uniformly from (0, 2).
Then, for the following 6 months, the patient receives a monthly chemotherapy
with a dosage level taken from one of four different values (actions) 0.1 (low), 0.4
(medium), 0.7 (high) and 1.0 (extreme), where 1.0 corresponds to the maximum
acceptable dose.2 As an illustration, Fig. 3 shows the treatment process of one
patient according to model (2) under a randomly selected chemotherapy policy.
The patient’s status is clearly sensitive to the amount of received drug. When
dosage level is too low, the tumor size grows towards a dangerous level, while
with a very high dosage level, the toxicity level will strongly affect the patient’s
wellness. The preferences are generated via Pareto dominance relation 3 using
roll-outs. We use LPC and choose a linear classifier, logistic regression, as the
base learner (again using the Weka implementation). The policy iteration stops
when (i) the difference between two consequential learned policies is smaller than
a pre-defined threshold, or (ii) the number of policy iterations reaches 10.

For testing, we further generate 200 virtual patients. In Fig. 4, the average
values of the two criteria (CX , CS) are shown as points for the constant policies
low, medium, high, extreme (i.e., the policies prescribing a constant dosage re-
gardless of the state). As can be seen, all four policies are Pareto-optimal, which
is hardly surprising in light of the fact that toxicity and tumor size are conflicting
criteria: A reduction of the former tends to increase the latter, and vice versa.
The figure also shows the convex hull of the Pareto-optimal policies.

Finally, we add the results for two other policies, namely the policy learned by
our preference-based approach and a random policy, which, in each state, picks a
dose level at random. Although these two policies are again both Pareto-optimal,
it is interesting to note that our policy is outside the convex hull of the constant
policies, whereas the random policy falls inside. Recalling the interpretation of
the convex hull in terms of randomized strategies, this means that the random
policy can be outperformed by a randomization of the constant policies, whereas
our policy can not.
2 We exclude the value 0, as it is a common practice to let the patient keep receiving
certain level of chemotherapy agent during the treatment in order to prevent the
tumor relapsing.
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Fig. 4. Illustration of patients status under different treatment policies. On the x-axis
is the tumor size after 6 months. On the y-axis is the highest toxicity during the 6
months. From top to bottom: Extreme dose level (1.0), high dose level (0.7), random
dose level, learned dose level, medium dose level (0.4), low dose level (0.1). The values
are averaged from 200 patients.

6 Conclusions

The goal of this work is to make first steps towards lifting conventional rein-
forcement learning into a qualitative setting, where reward is not available on
an absolute, numerical scale, but where comparative reward functions can be
used to decide which of two actions is preferable in a given state. To cope with
this type of training information, we proposed a preference-based extension of
approximate policy iteration. Whereas the original approach essentially reduces
reinforcement learning to classification, we tackle the problem by means of a
preference learning method called label ranking. In this setting, a policy is rep-
resented by a ranking function that maps states to total orders of all available
actions.

To demonstrate the feasibility of this approach, we performed two case studies.
In the first study, we showed that additional training information about lower-
ranked actions can be successfully used for improving the learned policies. The
second case study demonstrated one of the key advantages of a qualitative policy
iteration approach, namely that a comparison of pairs of actions is often more
feasible than the quantitative evaluation of single actions.

The work reported in this paper provides a point of departure for extensions
along several lines. For example, while the setting we assumed is not uncommon
in the literature, the existence of a generative model is a strong assumption.
In future work, we will therefore focus on generalizing our approach toward an
on-line learning setting with on-policy updates.
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