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Abstract. In standard supervised learning, each training instance is
associated with an outcome from a corresponding output space (e.g., a
class label in classification or a real number in regression). In the super-
set learning problem, the outcome is only characterized in terms of a
superset—a subset of candidates that covers the true outcome but may
also contain additional ones. Thus, superset learning can be seen as a
specific type of weakly supervised learning, in which training examples
are ambiguous. In this paper, we introduce a generic approach to superset
learning, which is motivated by the idea of performing model identifica-
tion and “data disambiguation” simultaneously. This idea is realized by
means of a generalized risk minimization approach, using an extended
loss function that compares precise predictions with set-valued obser-
vations. As an illustration, we instantiate our meta learning technique
for the problem of label ranking, in which the output space consists of
all permutations of a fixed set of items. The label ranking method thus
obtained is compared to existing approaches tackling the same problem.

1 Introduction

Superset learning is a specific type of learning from weak supervision, in which
the outcome (response) associated with a training instance is only characterized
in terms of a subset of possible candidates. Thus, superset learning is somehow in-
between supervised and semi-supervised learning, with the latter being a special
case (in which supersets are singletons for the labeled examples and cover the
entire output space for the unlabeled ones). There are numerous applications in
which only partial information about outcomes is available [13].

Correspondingly, the superset learning problem has received increasing atten-
tion in recent years, and has been studied under various names, such as learning
from ambiguously labeled examples or learning from partial labels [6,11,15,5]. The
contributions so far also differ with regard to their assumptions on the incomplete
information being provided. In this paper, we only assume the actual outcome
to be covered by the subset—hence the name superset learning.

We introduce an approach to superset learning based on direct loss minimiza-
tion with a suitably generalized loss function. While previous work on superset
learning has mainly been focused on (multi-class) classification, our approach is
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 260–275, 2015.
DOI: 10.1007/978-3-319-23525-7 16



Superset Learning Based on Generalized Loss Minimization 261

Fig. 1. Data generating process in the setting of superset learning.

completely generic and does not make any specific assumptions about the out-
put space. In fact, we argue that superset learning is specifically interesting for
complex, structured output prediction, because information about such outputs
is indeed often incomplete. This is why, in the second part of the paper, we apply
our approach to the problem of label ranking, where outputs take the form of
rankings. More specifically, by instantiating our approach to superset learning
for the case of label ranking, we develop a new method for this problem, which
turns out to perform quite strongly in first experimental studies.

The rest of the paper is organized as follows. In the next section, we introduce
the basic problem setting and the main notation to be used throughout the
paper. Our new approach to superset learning is then introduced in Section 3.1

In Sections 4 and 5, we recall the label ranking problem and introduce our new
method.2 The paper concludes with a summary and an outlook on future work
in Section 6.

2 Setting and Notation

Consider a standard setting of supervised learning with an input (instance) space
X and an output space Y. The goal is to learn a mapping from X to Y that
captures, in one way or the other, the dependence of outputs (responses) on
inputs (predictors). The learning problem essentially consists of choosing an
optimal model (hypothesis) M∗ from a given model space (hypothesis space)
M, based on a set of training data

D =
{

(xn, yn)
}N

n=1
∈ (X × Y)N . (1)

More specifically, optimality typically refers to optimal prediction accuracy, i.e.,
a model is sought whose expected prediction loss or risk

R(M) =
∫

L
(
y,M(x)

)
dP(x, y) (2)

is minimal; here, L : Y × Y −→ R is a loss function, and P is an (unknown)
probability measure on X ×Y modeling the underlying data generating process.

In this paper, we are interested in the case where output values yn ∈ Y are
not necessarily observed precisely; instead, only a superset Yn ⊆ Y is observed.

1 This approach is leaned on [8], where a similar problem is studied in the context of
learning from “fuzzy data”.

2 A first version of this method has been presented at M-PREF 2013, 7th Multidisci-
plinary Workshop on Advances in Preference Handling, Beijing, China.
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Therefore, the learning algorithm does not have direct access to the (precise)
data (1), but only to the (imprecise, ambiguous) observations

O =
{
(xn, Yn)

}N

n=1
∈ (X × 2Y)N . (3)

More specifically, we assume a data generating process as sketched in Figure 1:
Given an instance x ∈ X , an underlying process first generates a precise outcome
y ∈ Y, which is then turned into an imprecise observation in the form of a
superset Y � y. We refer to this process of generating Y as “ambiguation” or
“imprecisiation” of y.

In the following, we denote by Y = Y1×Y2×· · ·×YN the (Cartesian) product
of the supersets observed for x1, . . . ,xN . Moreover, each y = (y1, . . . , yN ) ∈ Y
is called an instantiation of the imprecisely observed data. More generally, we
call D in (1) an instantiation of O if the instances xn coincide and yn ∈ Yn for
all n ∈ [N ] = {1, . . . , N}.

Prior to proceeding, let us emphasize that the Yn are considered as constraints
on actual outcomes yn, not on any kind of ideal outcomes or predictions for the
instance xn. In regression, for example, outcomes yn could be random variables
with expected value μ(xn) and standard deviation σ(xn). What we assume,
then, is Yn � yn but not necessarily Yn � μ(xn).

3 A Loss Minimization Approach

Given the data generating process as outlined above, the likelihood of a model
M ∈ M can be defined by the probability of the data given the model, i.e.,

�(M) = P
(O,D |M)

= P(D |M)P(O |D,M) . (4)

A reasonable assumption is that the imprecise observations Yn only depend on
the underlying true outcomes yn but not on the model M or, in other words,
that O is conditionally independent of M given D. Under this assumption,
P(O |D,M) = P(O |D) and (4) becomes

�(M) = P
(O,D |M)

= P(D |M)P(O |D) . (5)

As can be seen, the likelihood of M under the superset data is a weighted aver-
age of standard likelihoods P(D |M), with each precise data sample D being
weighted by the probability P(O |D) of observing O if the true underlying data
were D. In some cases, specific knowledge about these probabilities, i.e., about
the process of imprecisiation, is available; for example, in a classification set-
ting, a connection between true labels and observed partial labels is established
in terms of a so-called mixing matrix in [17]. However, in lack of any specific
knowledge of that kind, the most reasonable assumption we can make is

P(Y | y) =
{

const if Y � y
0 if Y �� y

(6)
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We call this the superset assumption, as it does not assume anything else than
the observation Y being a superset of y; in fact, the uniform distribution (6) is
the “weakest” distribution in accordance with this assumption, namely the one
with the highest entropy among all distributions allocating the entire probability
mass on supersets of y.

Now, it is easy to see that the likelihood (4) will vanish as soon as yn �∈ Yn

for at least one of the observations, while P(O |D) is a non-negative constant
that does not depend on M if yn ∈ Yn for all n ∈ [N ]. Thus, maximizing the
likelihood is equivalent to finding

M∗ ∈ argmax
M∈M

max
y∈Y

N∏

n=1

P(yn |M,xn) (7)

or, equivalently,

M∗ ∈ argmin
M∈M

min
y∈Y

N∑

n=1

− logP(yn |M,xn) . (8)

3.1 Generalized Loss Minimization

Recall the principle of empirical risk minimization (ERM): A model M∗ is sought
that minimizes the empirical risk

Remp(M) =
1
N

N∑

n=1

L
(
yn,M(xn)

)
, (9)

i.e., the average loss on the training data D = {(xi, yi)}N
i=1. The empirical risk

(9) serves as a surrogate of the true risk (2). In order to avoid the problem of
possibly overfitting the data, not (9) itself is typically minimized but a regularized
version thereof. This is of minor importance here, however, and the approach
outlined in the following can be generalized from standard ERM to regularized
risk minimization in a straightforward way.

Now, coming back to our superset learning problem, it is interesting to note
that the approach (8) can be seen as a special case of ERM, with the loss function
L(·) given by the logistic loss: L(y, ŷ) = L(y,M(x)) is the (negative) logarithm
of the probability of y under the distribution specified by M(x). For example,
suppose that M is the class of linear regression models with normally distributed
error term, i.e., y = Mw(x) = w�x + ε. Then,

M∗ ∈ argmin
Mw∈M

min
y∈Y

N∑

n=1

(
yn − w�xn

)2
.

As can be seen, each candidate model M is evaluated optimistically
according to

Remp(Mw) = min
y∈Y

N∑

n=1

(
yn − w�xn

)2
,
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i.e., the standard (squared) loss it makes on the instantiation y that is most
favorable for M , and then the model M∗ with the best optimistic evaluation is
chosen.

Of course, the logistic loss could in principle be replaced by any other loss
function L(·) of interest; this is in fact even a prerequisite for working with non-
probabilistic models, i.e., if a model M merely produces predictions in Y but
not complete probability distributions. A model M is then evaluated according
to

Remp(M) = min
y∈Y

1
N

N∑

n=1

L
(
yn,M(xn)

)
.

Moreover, given a loss that is decomposable (over examples), the “optimism”
can be moved into the loss:

min
y∈Y

N∑

n=1

L
(
yn,M(xn)

)
=

N∑

n=1

min
yn∈Yn

L
(
yn,M(xn)

)

=
N∑

n=1

L∗(yn,M(xn)
)

with the generalized loss function

L∗(Y, ŷ) = min
{
L(y, ŷ) | y ∈ Y

}
(10)

that compares (precise) predictions with set-valued observations. We call this loss
the optimistic superset loss (OSL). Note that this loss covers the superset error
�ŷ �∈ Y �, which is commonly used in superset label learning for classification [14],
as a special case.

In summary, our approach to superset learning is based on the minimization
of the empirical risk with respect to this generalized loss function. Thus, each
candidate model M ∈ M is evaluated in terms of

Remp(M) =
1
N

N∑

n=1

L∗(Yn,M(xn)
)

, (11)

and an optimal model M∗ is one that minimizes (11) — or, as mentioned before,
a regularized version thereof.

3.2 Data Disambiguation

In the context of learning from data, not only the data is providing informa-
tion about the (unknown) model, but also the other way around. This view
is made explicit in the Bayesian approach to data analysis, where the joint
model/data probability P(M,D) can be written either way, as P(M)P(D |M)
and P(D)P(M | D). From a Bayesian perspective, the superset learning prob-
lem could be tackled quite naturally by not only starting with a prior on the
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Fig. 2. Model identification and data disambiguation go hand in hand. Left: Assuming
a linear model, the two example marked by a cross are most likely positive. Right:
Fitting a nonlinear model, disambiguation of these examples is less obvious.

model class M but also on the data, for example defining a uniform prior on
each superset Yn and zero probability outside. Inference would then come down
to attuning these priors, e.g., by turning priors into posteriors on the model
space and the data space in an alternating way. Eventually, this will yield a joint
model/data (posterior) probability P(M,D) that will not only inform about a
most plausible model M∗ but also about a most plausible instantiation y∗ of
the imprecise data. In other words, it will help disambiguating the data.

Our approach supports data disambiguation, too, albeit in a different way.
As can be seen from the “double-max” operation in (7), model and data are
selected in the most favorable combination. Thus, disambiguation essentially
relies on the inductive bias implemented by the model class M [9]. In fact, against
the background of the learning bias, some instantiations of the ambiguous data
appear to be more plausible than others. This is illustrated in Figure 2 for
a simple scenario of binary classification, in which some instances are known
to be positive (marked in black, yn = +1), some are known to be negative
(white, yn = −1), whereas some are unlabeled (grey, Yn = {−1,+1}). Now,
consider the two unlabeled instances marked with a cross, for example. Looking
at each example in isolation, nothing can be said about the actual (precise)
label. However, when looking at the data as a whole, in conjunction with the
assumption of a linear decision boundary between the two classes, the positive
class is clearly more plausible than the negative class (left picture). Yet, looking
at the data with a slightly less biased view and also allowing for a nonlinear
(e.g., quadratic) discriminant, these cases are more difficult to disambiguate:
Both the positive and negative class appear to be plausible, since both can be
obtained with plausible models M ∈ M, i.e., models that are in agreement with
the rest of the data. This example also shows that the stronger the bias, i.e., the
more background knowledge is incorporated in the learning process, the easier
disambiguation of the data becomes.
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In our approach, the disambiguated outcome y∗ corresponds to those ele-
ments for which the minimizer M∗ of (11) attains its (generalized) risk, i.e.,

y∗
n = argmin

yn∈Yn

L
(
yn,M∗(xn)

)
.

3.3 Examples

It is interesting to note that several methods proposed in the literature can be
seen as special cases of our framework, i.e., these methods correspond to the
minimization of the generalized loss (11) following to a suitable imprecisiation
of the data. For example, the ε-insensitive loss L(y, ŷ) = max(|y−ŷ|−ε, 0) used in
support vector regression [16] corresponds to the OSL (10) with L the standard
L1 loss L(y, ŷ) = |y − ŷ| and precise data yn being replaced by interval-valued
data Yn = [yn − ε, yn + ε] (cf. Figure 3).

Fig. 3. The ε-insensitive loss (left) and the hat loss (right).

Perhaps more interestingly, we obtain semi-supervised learning with support
vector machines as a special case by considering unlabeled data as instances
labeled with the superset {−1,+1} (like in our above example). The generalized
loss (10), with L the standard hinge loss, then corresponds to the (non-convex)
“hat loss” (cf. Figure 3). More generally, if the loss L is a margin loss of the
form L(y, s) = f(ys), comparing a class label y ∈ {−1,+1} with a predicted
score s ∈ R in terms of a non-increasing function f : R −→ R, it is easy to
verify that (10) is given by L∗(Y, S) = f(|ys|) for Y = {−1,+1} (and, of course,
L∗(Y, S) = L(Y, s) = f(ys) for Y = {−1} and Y = {+1}).

3.4 Superset Learning for Structured Output Prediction

Existing work on superset learning has been focused almost exclusively on (multi-
class) classification. Obviously, our approach is not restricted to this problem;
instead, the output space Y is completely generic. In fact, one may even argue
that superset learning is more interesting for problems with complex, structured
outcomes, since outcomes of that kind are often only partially specified in prac-
tice. A partial structure is then quite naturally associated with a subset of Y,
namely the set of all consistent completions—note that this view is somehow
in contrast to the common view of a label set Yn as a corruption of the true
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label, and of the additional labels as distractors [13]. In the following, we shall
instantiate our approach for a problem of that kind, namely label ranking [19],
where the output space consists of rankings (permutations)

4 Label Ranking

Let C = {c1, . . . , cK} be a finite set of (choice) alternatives, referred to as labels.
We consider total order relations � on C, where ci � cj indicates that ci precedes
cj in the order. Since a ranking can be seen as a special type of preference
relation, we shall also say that ci � cj indicates a preference for ci over cj .
Formally, a total order � can be identified with a permutation π̄ of the set [K],
such that π̄(i) is the position of ci in the order. Let the output space Y be given
by the set of permutations of [K] (the symmetric group of order K).

In the setting of label ranking, preferences are “contextualized” by instances
x ∈ X . Thus, each instance x is associated with a ranking �x of the label set
C or, equivalently, a permutation π̄x ∈ Y. More specifically, since label rankings
do not necessarily depend on instances in a deterministic way, each instance x
is associated with a probability distribution P(· |x) on Y. Thus, for each π̄ ∈ Y,
P(π̄ |x) denotes the probability to observe π̄ in the context specified by x.

The goal in label ranking is to learn a “label ranker”, that is, a model M :
X −→ Y that predicts a ranking π̂ for each instance x given as an input. As
training data D, a label ranker uses a set of instances xn (n ∈ [N ]), together
with information about the associated rankings πn. Ideally, complete rankings
are given as training information, i.e., a single observation is a tuple of the form
(xn, πn) ∈ X × Y; we call an observation of that kind a complete example.
From a practical point of view, however, it is important to allow for incomplete
information in the form of a ranking of some but not all of the labels in C:

cτ(1) �x cτ(2) �x . . . �x cτ(J) , (12)

where J < K and {τ(1), . . . , τ(J)} ⊂ [K]. In the following, we will write complete
rankings π̄ with an upper bar (as we already did above). If a ranking π is not
complete, then π(j) is the position of cj in the incomplete ranking, provided this
label is contained, and π(j) = 0 otherwise.

Information in the form of an incomplete ranking π is naturally represented
in terms of a subset Y = E(π) ⊆ Y, namely the set of all of its linear extensions
E(π) (complete rankings preserving the order of those labels contained in π).
Note that, if π̄ is a completion of π, then π̄(k) ≥ π(k) for all k ∈ [K].

4.1 Prediction Accuracy

The prediction accuracy of a label ranker is typically assessed by comparing the
true ranking π̄ with the prediction π̂ in terms of a distance measure on rankings.
Among the most commonly used measures is the Kendall distance, which is
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defined by the number of inversions, that is, index pairs {i, j} ⊂ [K] such that
the order of ci and cj in π̄ is inverted in π̂:

D(π̄, π̂) =
∑

1≤i<j≤K

�
sign(π̄(i) − π̄(j)) �= sign(π̂(i) − π̂(j))

�
(13)

The well-known Kendall rank correlation measure is an affine transformation of
(13) to the range [−1,+1]. Besides, the sum of L1 or L2 losses on the ranks of
the individual labels are often used as an alternative:

D1(π̄, π̂) =
K∑

i=1

|π̄(i) − π̂(i)|, D2(π̄, π̂) =
K∑

i=1

(π̄(i) − π̂(i))2 (14)

These measures are closely connected with two other well-known rank corre-
lation measures: Spearman’s footrule is an affine transformation of D1 to the
interval [−1,+1], and Spearman’s rank correlation (Spearman’s rho) is such a
transformation of D2.

4.2 Label Ranking Methods

Several methods for label ranking have been proposed that try to exploit, in
one way or the other, the complex though highly regular structure of the output
space SK . These include generalizations of standard machine learning methods
such as nearest neighbor estimation and decision tree learning [4], as well as sta-
tistical inference based on parametrized models of rank data [3]. Moreover, sev-
eral reduction techniques have been proposed, that is, meta-learning techniques
that reduce the original label ranking problem into one or several classification
problems that are easier to solve [7,10].

Since the (base) learner used to realize label ranking is actually of minor
interest for our purpose, we shall stick to a simple nearest neighbor approach
in this paper. The most obvious way of exploiting our framework for superset
learning to realize such an approach consists of predicting, for a new query
instance x0, the ranking

π̂ ∈ argmin
π∈Y

nn∑

n=1

L∗(E(πn), π) , (15)

where π1, . . . , πnn are the (incomplete) rankings coming from the nn nearest
neighbors of x0, and L∗ is the OSL extension of a loss such as (13) or (14).
However, depending on the loss chosen, the problem of finding a minimizer in (15)
may become computationally expensive. Therefore, we subsequently introduce
a new meta-learning technique for label ranking, which is based on the idea of
reducing the original problem to standard classification problems.

5 Label Ranking based on Labelwise Decomposition

Unlike existing reduction techniques, which transform the original label ranking
problem to a single large or a quadratic number of small binary classification
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problems [7,10], our approach is based on a labelwise decomposition into K
ordinal classification problems. As will be explained in more detail in the follow-
ing, the basic idea is to train one model per label, namely a model that maps
instances to ranks.

5.1 Complete Training Information

If the training data D is precise, i.e., consists of complete examples (xn, π̄n), then
each such example informs about the rank π̄(k) of the label ck in the ranking
associated with xn. Thus, a quite natural idea is to learn a model

Mk : X −→ [K]

that predicts the rank of ck, given an instance x ∈ X as an input. Indeed, such
a model can be trained easily on the (label-specific) data

Dk =
{

(xn, rn) | (xn, π̄n) ∈ D, rn = π̄n(k)
}

. (16)

The classification problems thus produced are multi-class problems with K
classes, where each class corresponds to a possible rank. More specifically, since
these ranks have a natural order, we are facing an ordinal classification problem.
Thus, training of the models Mk (k ∈ [K]) can in principle be accomplished by
any existing method for ordinal classification.

5.2 Incomplete Training Information

As mentioned before, the original training data is not necessarily precise; instead,
for a training instance xn, only an incomplete ranking πn of a subset of the labels
in C might have been observed, while the complete ranking π̄n is not given. In
this case, the above method is not directly applicable: If at least one label is
missing, i.e., |πn| < K, then none of the true ranks π̄n(k) is precisely known;
consequently, the training data (16) cannot be constructed.

Nevertheless, even in the case of incomplete rankings, non-trivial information
can be derived about the rank π̄(k) for at least some of the labels ck. In fact, if
|π| = J and π(k) = r > 0, then

π̄(k) ∈ Y =
{
r, r + 1, . . . , r + K − J

}
.

Of course, if π(k) = 0 (i.e., ck is not present in the ranking), only the trivial
information π̄(k) ∈ [K] can be derived. Yet, more precise information can be
obtained under additional assumptions on the process of imprecisiation, which
in this case is responsible for removing labels from the complete ranking. For
example, if π is known to be the top of the ranking π̄, then

{
π̄(k) = π(k) if π(k) > 0
π̄(k) ∈ {J + 1, . . . , K} if π(k) = 0 . (17)
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This scenario is practically relevant, since top-ranks are observed in many appli-
cations.

In general, the type of training data that can be derived for a label ck in the
case of incomplete rank information is of the form

O =
{(

xn, Yn

)}N

n=1
⊂ X × 2[K] , (18)

that is, an instance xn together with a set of possible ranks Yn. Again, this
is exactly the type of data assumed as an input by our approach to superset
learning.

5.3 Generalized Nearest Neighbor Estimation

As already mentioned, we use a simple nearest neighbor approach for prediction:
Given a new query instance x0, a prediction π̂ is obtained by combining the
(incomplete) rankings π1, . . . , πnn coming from the nn nearest neighbors of x0 in
the training data O. Denote by Yk,n (k ∈ [K], n ∈ [nn]) the (possibly imprecise)
rank information for label ck provided by πn. Moreover, consider a distance D(·)
on Y that is labelwise decomposable, i.e., which can be written in the form

D(π̄, π̂) =
K∑

k=1

L(π̄(k), π̂(k)).

Obviously, the L1 and L2 loss in (14) are both of this type. Then, the empirical
risk of π̂, i.e., the loss of this prediction in the neighborhood of x0, is given by

nn∑

n=1

D(π̄n, π̂) =
nn∑

n=1

K∑

k=1

L(π̄n(k), π̂(k)) (19)

=
K∑

k=1

nn∑

n=1

L(π̄n(k), π̂(k)) (20)

=
K∑

k=1

Lk(π̂(k)), (21)

where Lk(r) is the cost of putting label ck on position r. Taking into account
that in general only incomplete rankings πn are observed, the loss L(·) should
be replaced by its generalization (10) and, therefore, Lk should be defined as

Lk(r) =
nn∑

n=1

L∗(Yk,n, r) .

Thus, an optimal solution would consist of assigning ck the position π̂(k) = r
for which Lk(r) is minimal. However, noting that each position r ∈ [K] must
be assigned at most once, this approach is obviously not guaranteed to produce
a feasible solution. Instead, the minimization of (19) requires the solution of an
optimal assignment problem [2]:
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– labels ck ∈ C must be uniquely assigned to ranks r = π̂(k) ∈ [K];
– assigning ck to rank r causes a cost of Lk(r);
– the goal is to minimize the sum of all assignment costs.

Assignment problems of that kind have been studied extensively in the litera-
ture, and efficient algorithms for their solution are available. The well-known
Hungarian algorithm [12], for example, solves the above problem in time O(K3).
Such algorithms can be used to produce a prediction π̂ that minimizes the sum
of assignment costs L1(π̂(1))+ . . .+LK(π̂(K)), and therefore to realize our near-
est neighbor approach to label ranking. In the next section, we experimentally
analyze this approach with L given by D1 in (14).

5.4 Experiments

In this section, we experimentally compare our new method, referred to as LWD
(for Label-Wise Decomposition), with another nearest neighbor approach to
label ranking. This approach is based on the (local) estimation of the parameters
of a probabilistic model called the Plackett-Luce (PL) model [3]. It is known
to achieve state-of-the-art performance, not only among the nearest neighbor
approaches but among label ranking methods in general. Apart from that, the
comparison with PL is specifically interesting for the following reason: The app-
roach is based on finding the probabilistic model, identified by a parameter vector
v = (v1, . . . , vK), for which the likelihood of observing the (neighbor) rankings
is maximized:

v∗ ∈ argmax
v∈R

K
+

nn∏

n=1

PL(πn |v)

Now, with PL being a probability measure on the set of permutations Y, the
probability of an incomplete ranking πn is given by the corresponding marginal,
namely

P(πn |v) =
∑

π∈E(πn)

PL(π |v) .

Thus, as can be seen, ambiguous examples are dealt with by summing over the
corresponding superset, as opposed to maximizing as suggested by our approach
(7). Since summation is more in line with averaging over all candidates than
selecting the most plausible one, this approach is obviously less in the spirit of
superset learning through data disambiguation.

As data sets, we used several benchmarks for label ranking that have also
been used in previous studies [10]; these are semi-synthetic data sets, namely
label ranking versions of (real) UCI multi-class data. Moreover, we used two real
label ranking data sets: The Sushi data3 consists of 5000 instances (customers)
described by 11 features, each one associated with a ranking of 10 types of
sushis. The Students data [1] consists of 404 students (each characterized by 126
attributes) with associated rankings of five goals (want to get along with my

3 http://kamishima.new/sushi/
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Table 1. Properties of the data sets.

data set # inst. (N) # attr. (d) # labels (K)

authorship 841 70 4
glass 214 9 6
iris 150 4 3
pendigits 10992 16 10
segment 2310 18 7
vehicle 846 18 4
vowel 528 10 11
wine 178 13 3
sushi 5000 11 10
students 404 126 5

Table 2. Performance in terms of Kendall’s tau on synthetic data: missing-at-random
(above) and top-rank setting (below).

complete ranking 30% missing labels 60% missing labels
LWD PL LWD PL LWD PL

authorship .933±.016 .936±.015 .925±.018 .833±.030 .891±.021 .601±.054
glass .840±.075 .841±.067 .819±.078 .669±.064 .721±.072 .395±.068
iris .960±.036 .960±.036 .932±.051 .896±.069 .876±.068 .787±.111
pendigits .940±.002 .939±.002 .924±.002 .770±.004 .709±.005 .434±.007
segment .953±.006 .950±.005 .914±.009 .710±.013 .624±.020 .381±.020
vehicle .853±.031 .859±.028 .836±.032 .753±.032 .767±.037 .520±.050
vowel .876±.021 .851±.020 .821±.022 .612±.027 .536±.034 .327±.033
wine .938±.050 .947±.047 .933±.054 .919±.059 .921±.062 .863±.094

authorship .933±.016 .936±.015 .932±.017 .927±.017 .923±.015 .886±.022
glass .840±.075 .841±.067 .838±.074 .809±.066 .815±.075 .675±.069
iris .960±.036 .960±.036 .956±.036 .926±.051 .932±.048 .868±.070
pendigits .940±.002 .939±.002 .933±.002 .918±.002 .837±.004 .794±.004
segment .953±.006 .950±.005 .943±.005 .874±.008 .844±.010 .674±.015
vehicle .853±.031 .859±.028 .851±.033 .838±.030 .818±.032 .765±.035
vowel .876±.021 .851±.020 .867±.021 .785±.020 .800±.021 .588±.024
wine .938±.050 .947±.047 .936±.049 .926±.061 .930±.059 .907±.066

parents, want to feel good about myself, want to have nice things, want to be
different from others, want to be better than others). See Table 1 for a summary
of the data.

Two missing label scenarios (imprecisiation procedures) were simulated,
namely a “missing-at-random” setting and the top-rank setting (17). In the first
case, a biased coin is flipped for every label in a ranking to decide whether to
keep or delete that label; the probability for a deletion is specified by a parame-
ter p ∈ [0, 1]. Thus, p × 100% of the labels will be missing on average. Similarly,
in the second case, only the J top-labels in a ranking are kept, where J has a
binomial distribution with parameters K and 1 − p.

The results in Tables 2 and 3 are presented as averages of 5 × 10-fold cross
validation in terms of the Kendall correlation measure; other measures such as
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Table 3. Performance in terms of Kendall’s tau on real-world data: missing-at-random
(above) and top-rank setting (below).

sushi 0% 10% 20% 30% 40% 50% 60% 70%
LWD .323±.012 .322±.011 .320±.011 .319±.010 .315±.011 .308±.011 .296±.011 .277±.010
PL .321±.010 .320±.010 .318±.010 .311±.010 .298±.011 .278±.010 .246±.010 .203±.012
LWD .325±.012 .324±.011 .324±.011 .323±.011 .323±.011 .323±.011 .321±.011 .316±.011
PL .321±.010 .320±.010 .320±.011 .320±.011 .319±.010 .316±.010 .310±.010 .303±.011

students 0% 10% 20% 30% 40% 50% 60% 70%
LWD .641±.051 .641±.051 .640±.050 .640±.051 .638±.052 .637±.051 .633±.054 .626±.055
PL .386±.028 .384±.027 .382±.026 .377±.029 .365±.025 .350±.027 .327±.027 .274±.033
LWD .641±.051 .641±.051 .641±.051 .641±.051 .640±.051 .640±.052 .638±.050 .628±.052
PL .386±.028 .385±.028 .386±.028 .385±.027 .383±.029 .379±.026 .377±.026 .371±.028
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Fig. 4. Performance of LWD (solid lines) and PL (dashed line) in the missing-at-
random setting.

(14) led to similar results. The number of nearest neighbors was determined
through internal cross-validation. As a distance measure on X , the standard
Euclidean distance was used.

These results clearly support the conclusion that, while LWD and PL are
quite en par in the complete ranking case, the latter is much more sensitive
toward missing label information than the former. In fact, the performance of
LWD is comparably stable, and its drop in performance due to missing label
information is less pronounced than in the case of PL; this observation is espe-
cially clear in the missing-at-random setting (see Figure 4), whereas the differ-
ences in performance are less visible in the top-rank setting. In any case, these
results are very interesting in light of our previous remarks on the comparison
between averaging (product-sum inference) and maximizing (product-maximum
inference) and clearly provide first evidence in favor of the effectiveness of learn-
ing through disambiguation in the context of structured output prediction.
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6 Summary and Outlook

Our approach to superset learning is based on the idea of simultaneously find-
ing the most plausible combination of model and data. As we explained, this
idea could in principle also be realized by means of a probabilistic approach,
and indeed, the principle of likelihood maximization was on the origin of our
considerations. However, a full-fledged probabilistic approach is quite demand-
ing and requires working with probability distributions both in the model and
the data space. While perhaps being less principled, our approach relaxes these
requirements: The plausibility of a model is captured in terms of how well it fits
the data (according to a given loss); moreover, by merely distinguishing between
possible and impossible instantiations of the imprecise data, plausibility in the
data space is treated as a purely bivalent notion.

There are various directions for future work, notably the following:

– Depending on the underlying loss function L(·), the computation of the cor-
responding OSL (10) and solution of the optimization problem (11) may
become complex, especially since (10) could be non-convex. Therefore, effi-
cient algorithmic solutions need to be found for specific instantiations of our
framework.

– Theoretical properties of our approach to superset learning need to be inves-
tigated. A specifically important question concerns conditions under which
successful learning, for example in the sense of (stochastic) convergence
toward an optimal model, is actually possible. An analysis of this kind obvi-
ously requires assumptions about the process of imprecisiation. Imagine, for
example, a classification problem in which class A is deterministically added
to the observed superset whenever the true class is B and vice versa. Learn-
ing to distinguish A from B is obviously impossible in that case. See [14]
for a first analysis of learnability in the context of superset label learning
problem (superset learning for binary classification).

– The idea of tackling structured output prediction by superset learning
appears to be interesting, and our results for label ranking are indeed promis-
ing. This idea should therefore be realized for other types of structured out-
put prediction, too, for example multi-label classification [18].
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