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Abstract

This paper introduces two new methods for
label ranking based on a probabilistic model
of ranking data, called the Plackett-Luce
model. The idea of the first method is to use
the PL model to fit locally constant probabil-
ity models in the context of instance-based
learning. As opposed to this, the second
method estimates a global model in which the
PL parameters are represented as functions of
the instance. Comparing our methods with
previous approaches to label ranking, we find
that they offer a number of advantages. Ex-
perimentally, we moreover show that they are
highly competitive to start-of-the-art meth-
ods in terms of predictive accuracy, especially
in the case of training data with incomplete
ranking information.

1. Introduction

The problem of label ranking can be considered as a
generalization of conventional classification, insofar as
a complete ranking of all labels is requested as a pre-
diction instead of only a single class label. Thus, as we
shall explain in more detail later on, the label ranking
problem consists of learning a mapping from instances
to rankings over a finite set of predefined labels.

Several methods for label ranking have already been
proposed in the literature; we refer to (Vembu &
Gärtner, 2010) for a comprehensive survey. Existing
methods for label ranking are mostly reduction tech-
niques transforming the original learning problem into
one or several binary classification problems. So-called
constraint classification, for example, turns the origi-
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nal problem into a single binary classification prob-
lem in an expanded space of higher dimension, and
constructs a label ranking model from the classifier
learned in that space (Har-Peled et al., 2003). Another
approach, ranking by pairwise comparison, reduces the
original problem to several small instead of a single
large binary classification problem. More specifically,
one binary model is learned for each pair of labels,
and the predictions of these models are combined into
a ranking of all labels (Hüllermeier et al., 2008).

Reduction techniques of this kind have shown promis-
ing performance in first experimental studies. More-
over, the reduction of the label ranking problem to the
simpler problem of binary classification is appealing
for several reasons. Notably, it makes the label rank-
ing problem amenable to the large repertoire of (bi-
nary) classification methods and existing algorithms
in this field. On the other hand, reduction techniques
also come with some disadvantages. In particular, the-
oretical assumptions on the sought “ranking-valued”
mapping, which may serve as a proper learning bias,
may not be easily translated into corresponding as-
sumptions for the classification problems. Likewise, it
is often not clear (and mostly even wrong) that min-
imizing the classification error, or a related loss func-
tion, on the binary problems is equivalent to maximiz-
ing the (expected) performance of the label ranking
model in terms of the desired loss function on rank-
ings (Hüllermeier & Fürnkranz, 2010).

An alternative approach, which avoids these problems
to some extent, was recently put forward in (Cheng
et al., 2009). Here, the idea is to develop label ranking
methods on the basis of statistical models for ranking
data, that is, parameterized (conditional) probability
distributions on the class of all rankings. Given as-
sumptions of that kind, the learning problem can be
posed as a problem of maximum likelihood estimation
(or, alternatively, as a problem of Bayesian inference)
and thus be solved in a theoretically sound way.
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In (Cheng et al., 2009), the authors proposed to use
the Mallows model and developed an instance-based
(nearest neighbor) learning algorithm to estimate this
model in a local way. In this paper, we propose the
Plackett-Luce model as an alternative, especially since
this model is more apt to learning from possibly incom-
plete label rankings. Moreover, apart from the estima-
tion of locally constant models suitable for instance-
based learning, we also develop a method for estimat-
ing generalized linear models.

The paper is organized as follows. Section 2 recalls
the problem of label ranking in a more formal setting.
In Section 3, we introduce a probability model that
will be used for estimating predictive models for rank-
ings. Sections 4 and 5 are devoted, respectively, to the
instance-based and generalized linear method for la-
bel ranking. An experimental evaluation is presented
in Section 6, and Section 7 concludes the paper.

2. Label Ranking

In the setting of label ranking, each instance x from an
instance space X is associated with a total order of all
class labels, that is, a total, transitive, and asymmet-
ric relation �x on Y, where yi �x yj indicates that yi

precedes yj in the order. Since a ranking can be con-
sidered as a special type of preference relation, we shall
also say that yi �x yj indicates that yi is preferred to
yj given the instance x.

Note that, in contrast to the classification scenario,
there is no such thing as a “true class label” of an in-
stance under this interpretation. However, depending
on the type of application, other interpretations of a
label ranking are possible. For example, within the
setting of conventional classification, a ranking can
be interpreted as a special type of qualitative prob-
ability on Y (Wellman, 1994). The order relation
yi �x yj then indicates that the conditional proba-
bility of yi given x is higher than the probability of
yj given x, without specifying any concrete numerical
values. Given that good numerical estimates are hard
to obtain, and sometimes not even needed for decision
making, a qualitative representation of this kind is an
interesting alternative to numerical distributions.

Formally, a total order �x can be identified with a
permutation πx of the set {1, . . . ,M}. We define πx

such that πx(i) is the index j of the class label yj put
on the i-th position in the order (and hence π−1

x
(j) = i

the position of the j-th label). This permutation thus
encodes the (ground truth) order relation

yπx(1) �x yπx(2) �x . . . �x yπx(M) .

The class of permutations of {1, . . . ,M} (the symmet-

ric group of order M) is denoted by Ω. By abuse of
terminology, though justified in light of the above one-
to-one correspondence, we refer to elements π ∈ Ω as
both permutations and rankings.

In analogy with the classification setting, we do not
assume the existence of a deterministic X −→ Ω map-
ping. Instead, every instance is associated with a prob-
ability distribution over Ω. This means that, for each
x ∈ X, there exists a probability distribution P(· |x)
such that, for every π ∈ Ω, P(π |x) is the probability
that πx = π. (Note that, if rankings are interpreted
as qualitative probabilities, then P(· |x) is a probabil-
ity over probability distributions, i.e., a second-order
probability.)

The goal in label ranking is to learn a “label ranker” in
the form of an X −→ Ω mapping. As training data, a
label ranker uses a set of instances xn (n = 1, . . . , N),
together with information about the associated rank-
ings πxn

. Ideally, complete rankings are given as train-
ing information. From a practical point of view, how-
ever, it is important to allow for incomplete informa-
tion in the form of a ranking

yπx(1) �x yπx(2) �x . . . �x yπx(k) , (1)

where k < M and {π(1), . . . , π(k)} ⊂ {1, . . . ,M}. For
example, for an instance x, it might be known that
y2 �x y1 �x y5, while no preference information is
given about the labels y3 or y4. By definition, we let
π−1(yi) = π−1(i) = 0 if yi is not present in the rank-
ing π; thus, the presence of a class yi is equivalent to
π−1(i) > 0.

To evaluate the predictive performance of a label
ranker, a suitable loss function on Ω is needed. In
the statistical literature, several distance measures for
rankings have been proposed. For example, a com-
monly used measure is Kendall’s tau coefficient, de-
fined as

C(π, σ) − D(π, σ)

M(M − 1)/2
(2)

with C(π, σ) the number of concordant label pairs (i.e.,
pairs (i, j) ∈ {1, . . . ,M}2 such that (π(i) − π(j)) ·
(σ(i) − σ(j)) > 0) and D(π, σ) the number of discor-
dant pairs ((i, j) with (π(i)−π(j)) · (σ(i)−σ(j)) < 0).
Actually, (2) is not a loss function but a correlation
measure with values in [−1,+1] (it assumes the value
1 if σ = π and the value −1 if σ is the reversal of π).

3. Ranking Models

So far, no assumptions about the conditional prob-
ability measure P(· |x) on Ω were made, despite its
existence. In statistics, different types of probability
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distributions on rankings have been proposed (Mar-
den, 1995).

A prominent example is the Mallows model (Mallows,
1957), a distance-based probability model belonging to
the family of exponential distributions. The standard
Mallows model is determined by two parameters:

P(π | θ, π0) =
exp(−θD(π, π0))

φ(θ)
(3)

The ranking π0 ∈ Ω is the location parameter (mode,
center ranking) and θ ≥ 0 is a spread parameter.
Moreover, D(·) is a distance measure on rankings,
and the constant φ = φ(θ) is a normalization factor
that depends on the spread (but, provided the right-
invariance of D(·), not on π0).

Obviously, the Mallows model assigns the maximum
probability to the center ranking π0. The larger the
distance D(π, π0), the smaller the probability of π
becomes. The spread parameter θ determines how
quickly the probability decreases, i.e., how peaked the
distribution is around π0. For θ = 0, the uniform
distribution is obtained, while for θ → ∞, the dis-
tribution converges to the one-point distribution that
assigns probability 1 to π0 and 0 to all other rankings.

The Mallows model was used in (Cheng et al., 2009)
in the context of an instance-based approach to label
ranking. Notwithstanding some appealing properties,
the Mallows model is arguably not ideal for handling
incomplete training data, i.e., observations in the form
of incomplete rankings (1). Roughly speaking, this is
because the probability of such a ranking cannot be
expressed in closed form. Instead, it has to be derived
through marginalization:

P(π | θ, π0) =
∑

π∗∈E(π)

P(π∗ | θ, π0) ,

where E(π) denotes the set of linear extensions of π.1

Consequently, inference (maximum likelihood estima-
tion of π0 and θ) is difficult for incomplete observations
and becomes computationally complex. The normal-
ization factor φ(θ) in (3) causes additional problems.

Another model that seems to be more appropriate
from this point of view is the Plackett-Luce (PL)
model, which is specified by a parameter vector v =
(v1, v2, . . . vM ) ∈ R

M
+ :

P(π |v) =

M
∏

i=1

vπ(i)

vπ(i) + vπ(i+1) + . . . + vπ(M)
(4)

1A permutation π
∗ ∈ Ω is a linear extension of π if it

ranks all labels occurring in π in the same order.

This model is a generalization of the well-known
Bradley-Terry model, a model for the pairwise com-
parison of alternatives, which specifies the probability
that “a wins against b” in terms of

P(a � b) =
va

va + vb

.

Obviously, the larger va in comparison to vb, the higher
the probability that a is chosen. Likewise, the larger
the parameter vi in (4) in comparison to the parame-
ters vj , j 6= i, the higher the probability that the label
yi appears on a top rank. An intuitively appealing ex-
planation of the PL model can be given in terms of a
vase model: If vi corresponds to the relative frequency
of the i-th label in a vase filled with labeled balls, then
P(π |v) is the probability to produce the ranking π by
randomly drawing balls from the vase in a sequential
way and putting the label drawn in the k-th trial on
position k (unless the label was already chosen before,
in which case the trial is annulled).

For the PL model, one easily verifies that the proba-
bility of an incomplete ranking (1) is given by

P(π |v) =

k
∏

i=1

vπ(i)

vπ(i) + vπ(i+1) + . . . + vπ(k)
,

i.e., by an expression of exactly the same form, except
that the number of factors is k (the number of labels
observed) instead of M . In a different though related
context, the use of the PL model for machine learning
was recently motivated in (Guiver & Snelson, 2009).

4. Instance-Based Label Ranking

In this section, we propose an instance-based approach
to label ranking, i.e., a local prediction method based
on the nearest neighbor estimation principle. Consider
a query instance x ∈ X and let x1, . . . ,xK denote
the nearest neighbors of x (according to an underlying
distance measure on X) in the training set, where K ∈
N is a fixed integer. Each neighbor xi (i = 1, . . . ,K)
is associated with a possibly incomplete ranking πi of
the labels y ∈ Y. We denote by Mi ∈ {2, . . . ,M} the
number of labels ranked by πi. Moreover, recall that
πi(m) denotes the index of the label ranked on position
m.

In analogy to the conventional settings of classification
and regression, in which the nearest neighbor estima-
tion principle has been applied for a long time, we
assume that the probability distribution P(· |x) on Ω
is (at least approximately) locally constant around the
query x. By furthermore assuming that the rankings
πi have been produced independently of each other by
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the PL model (4), the probability to observe the rank-
ings π = {π1, . . . , πK} in the neighborhood, given the
parameters v = (v1, . . . , vM ), becomes

P(π |v) =
K
∏

i=1

Mi
∏

m=1

vπi(m)
∑Mi

j=m vπi(j)

. (5)

The maximum likelihood estimation (MLE) of v is
then given by those parameters that maximize this
probability or, equivalently, the log-likelihood function

L(v) =

K
∑

i=1

Mi
∑

m=1



log
(

vπi(m)

)

− log

Mi
∑

j=m

vπi(j)



 .

4.1. Maximum Likelihood Estimation

Finding the MLE parameters of the PL model is a
problem that has already been considered in the sta-
tistical literature. We resort to an algorithm called
MM, which is short for Minorization and Maximiza-
tion. MM seems to perform especially well for this
problem (Hunter, 2004). It is an iterative algorithm
whose idea is to maximize, in each iteration, a func-
tion that minorizes the original log-likelihood, namely

Qk(v) =

K
∑

i=1

Mi
∑

m=1



log
(

vπi(m)

)

−

∑Mi

j=m vπi(j)
∑Mi

j=m v
(k)
πi(j)



 .

Here, v
(k) = (v

(k)
1 , . . . , v

(k)
M ) is the estimation of the PL

parameters in the k-th iteration. Considering these
values as fixed, the problem to maximize Qk(·) as a
function of v can be solved analytically. The corre-
sponding solution, i.e., the parameter vector v

∗ for
which Qk(·) is maximal, is then used as a new solu-
tion: v

(k+1) = v
∗. This procedure provably converges

to an MLE estimation of the PL parameters.

4.2. Prediction

Given the MLE v
∗, a prediction of the ranking as-

sociated with x can be derived from the distribution
P(· |v∗) on Ω. In particular, a MAP estimate, i.e., a
ranking with the highest posterior probability, is given
by

π∗ ∈ arg max
π∈Ω

P(π |v∗) . (6)

A ranking of this kind can easily be produced by sort-
ing the labels yi in decreasing order according to the
respective parameters v∗

i , i.e., such that

vπ∗(i) ≥ vπ∗(j) (7)

for all 1 ≤ i < j ≤ M . More generally, given a loss
function `(·) to be minimized, the best prediction is

π∗ = arg min
π∈Ω

∑

τ∈Ω

`(π, τ) · P(τ |v∗) . (8)

In general, an interesting question concerns the com-
plexity of the minimization problem (8). An explicit
computation of the expected loss for each ranking π is
feasible only for small label sets Y, since the cardinal-
ity of Ω, which is given by |Ω| = |Y|! = M !, grows very
fast. However, depending on the loss function `(·) and
the probability distribution P(· |v∗), an explicit enu-
meration of this type can often be avoided.

The PL model appears to be especially appealing from
this point of view. In fact, due to the special struc-
ture of the probability distribution (4), a ranking of
the form (7) is not only the most intuitive prediction,
but also provably optimal for virtually all common loss
functions on rankings. Without going into technical
details here, we only mention that, in particular, it is
a risk minimizer for the 0/1 loss function (defined by
`(π∗, π) = 0 if π∗ = π and = 1 if π∗ 6= π) and, likewise,
a maximizer of the expected rank correlation in terms
of (2).

In contrast to other methods (including most reduc-
tion techniques) that simply produce a prediction in
terms of a ranking, a probabilistic approach to label
ranking allows one to complement predictions by di-
verse types of statistical information, for example re-
garding the reliability of a prediction. Besides, the
distribution P(· |v∗) supports various types of gen-
eralized predictions, such as credible sets of rankings
covering the true one with a high probability.

5. Generalized Linear Models

The learning method proposed in the previous sec-
tion is local (and lazy) in the sense that an individ-
ual PL model, i.e., an individual parameter vector
v = (v1, . . . , vM ), is estimated for each query instance
x ∈ X. In this section, we consider the estimation of a
global model as an alternative. To this end, we model
the parameters vm, quantifying the propensity for the
m-th label ym, i.e., the tendency to put this label on
a high rank, as a linear function of the attributes de-
scribing an instance. More precisely, to guarantee the
non-negativity of the parameters, we model their log-
arithm as a linear function:

vm = exp

(

D
∑

d=1

α
(m)
d · xd

)

, (9)

where we assume an instance to be represented in
terms of a feature vector x = (x1, . . . , xD) ∈ X = R

D.

The model parameters to be estimated are now the

α
(m)
d (1 ≤ m ≤ M, 1 ≤ d ≤ D). Given a training data

set

T =
{(

x
(n), π(n)

)}N

n=1
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with x
(n) =

(

x
(n)
1 , . . . , x

(n)
D

)

, the log-likelihood func-

tion is given by

L =

N
∑

n=1

[

Mn
∑

m=1

log
(

v(π(n)(m), n)
)

− log

Mn
∑

j=m

v(π(n)(j), n)



 ,

where Mn is the number of labels in the ranking π(n),
and

v(m,n) = exp

(

D
∑

d=1

α
(m)
d · x

(n)
d

)

.

The first derivatives of L(·) are given by

∂L

∂α
(a)
k

=

N
∑

n=1

δ(a, n, 1) · x
(n)
k

−
N
∑

n=1

Mn
∑

m=1

δ(a, n,m) ·
v(a, n) · x

(n)
k

∑Mn

j=m v(π(n)(j), n)
,

where

δ(a, n,m) =

{

1 (π(n))−1(a) ≥ m
0 otherwise

.

Moreover, the second derivatives (for a 6= b, k 6= `) are
as follows:

∂2L

∂
(

α
(a)
k

)2 = −

N
∑

n=1

Mn
∑

m=1

δ(a, n,m) · v(a, n) ·
(

x
(n)
k

)2

·

[

∑Mn

j=m v(π(n)(j), n) − v(a, n)
]

(

∑Mn

j=m v(π(n)(j), n)
)2

∂2L

∂α
(a)
k ∂α

(a)
`

= −

N
∑

n=1

Mn
∑

m=1

δ(a, n,m) · v(a, n) · x
(n)
k · x

(n)
`

·

[

∑Mn

j=m v(π(n)(j), n) − v(a, n)
]

(

∑Mn

j=m v(π(n)(j), n)
)2

∂2L

∂α
(a)
k ∂α

(b)
`

=

N
∑

n=1

Mn
∑

m=1

δ(a, n,m) · δ(b, n,m)

·
v(a, n) · x

(n)
k · v(b, n) · x

(n)
`

(

∑Mn

j=1 v(π(n)(j), n)
)2

Note that ∂2L/∂(α
(a)
k )2 ≤ 0 for all 1 ≤ a ≤ M and

1 ≤ k ≤ D. Based on these derivatives, the maxi-
mization of the log-likelihood can be accomplished by
means of gradient-based optimization methods. In our

implementation, we use a standard stochastic gradient
descent algorithm (Bottou, 2004) that, in terms of effi-
ciency, compared quite favorably with other gradient-
based methods.

6. Experimental Evaluation

In this section, we present an empirical evaluation
of our instance-based (IB-PL) and generalized lin-
ear (Lin-PL) approach to label ranking using the PL
model. For comparison, we include two other methods,
namely the aforementioned instance-based approach
using the Mallows model (IB-Mal) and so-called log-
linear models for label ranking (Lin-LL) as a represen-
tative of the class of linear models.

To guarantee a fair comparison, we used the Euclidean
distance (after normalizing the attributes) as a dis-
tance measure on the instance space for both IB-PL
and IB-Mal (and disabled distance-weighting in IB-
Mal). The neighborhood size K ∈ {5, 10, 15, 20} was
selected through cross validation on the training set.

Log-linear models for label ranking have been pro-
posed in (Dekel et al., 2004). In this approach, util-
ity functions fi(·) are expressed as linear combinations
of so-called base ranking functions (which map in-
stance/label pairs to real numbers). As a special case,

this includes functions of the form fi(x) =
∑D

d=1 αdxd,
which should be specified so as to minimize the num-
ber of ranking errors. A ranking error for an instance
x occurs if fi(x) < fj(x) even though the i-th label
should precede the j-th label, so the total number of
errors on x is

∑

1≤i≤j≤M

{

1 fπ(i)(x) < fπ(j)(x)
0 fπ(i)(x) ≥ fπ(j)(x)

Since minimizing this error (or, more precisely, the
sum of this error over all training instances) directly is
intractable, the authors propose to minimize a smooth,
convex upper bound:

log



1 +
∑

1≤i≤j≤M

exp
(

fπ(j)(x) − fπ(i)(x)
)





Algorithmically, this optimization problem is ap-
proached by means of a boosting-based algorithm that
works in an iterative way. In (Hüllermeier et al., 2008),
it was shown that this approach is quite comparable, in
terms of predictive accuracy, to other state-of-the-art
methods for label ranking.
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6.1. Data

Since benchmark data for the label ranking problem
is still not available, we resorted to multi-class and
regression data sets from the UCI repository and the
Statlog collection and turned them into label ranking
data in two different ways. (A) For classification data,
we followed the procedure proposed in (Hüllermeier
et al., 2008): A naive Bayes classifier is first trained
on the complete data set. Then, for each example, all
the labels present in the data set are ordered with re-
spect to the predicted class probabilities (in the case
of ties, labels with lower index are ranked first). This
way of generating label ranking data is in line with
the interpretation of rankings in terms of qualitative
probabilities, as discussed in Section 2. (B) For regres-
sion data, a certain number of (numerical) attributes
is removed from the set of predictors, and each one
is considered as a label. To obtain a ranking, the at-
tributes are standardized and then ordered by size.
Given that the original attributes are correlated, the
remaining predictive features will contain information
about the ranking thus produced. Yet, as will be con-
firmed by the experimental results, this second type of
data generation leads to more difficult learning prob-
lems. A summary of the data sets and their properties
is given in Table 1.2

Table 1. Data sets and their properties (the type refers to
the way in which the data has been generated).

data set type # inst. # attr. # labels
authorship A 841 70 4
bodyfat B 252 7 7
calhousing B 20640 4 4
cpu-small B 8192 6 5
elevators B 16599 9 9
fried B 40769 9 5
glass A 214 9 6
housing B 506 6 6
iris A 150 4 3
pendigits A 10992 16 10
segment A 2310 18 7
stock B 950 5 5
vehicle A 846 18 4
vowel A 528 10 11
wine A 178 13 3
wisconsin B 194 16 16

6.2. Experiments and Results

Results were derived in terms of Kendall’s tau co-
efficient from five repetitions of a ten-fold cross-
validation. To model incomplete observations, we

2The data sets, along with a description, are available
at http://www.uni-marburg.de/fb12/kebi/research/.

modified the training data as follows: A biased coin
was flipped for every label in a ranking to decide
whether to keep or delete that label; the probability for
a deletion is specified by a parameter p ∈ [0, 1]. Hence,
p × 100% of the labels will be missing on average.

The summary of the results is shown in Table 2. To
analyze these results, we followed the two-step proce-
dure recommended in (Demsar, 2006), consisting of a
Friedman test of the null hypothesis that all learners
have equal performance and, in case this hypothesis
is rejected, a Nemenyi test to compare learners in a
pairwise way. Both tests are based on the average
ranks (for each problem, the methods are ranked in
decreasing order of performance, and the ranks thus
obtained are averaged over the problems) as shown in
the bottom line in Table 2. At a significance level of
5%, IB-PL and IB-Mal are better than Lin-LL in the
case of complete rankings, whereas the Friedman test
does not discover significant differences in the case of
30% and 60% missing labels.

Table 3. Pairwise comparisons of the methods in terms of
win/win/win statistics: Wins in the complete ranking sce-
nario, in the 30% and in the 60% missing label scenario.

IB-PL IB-Mal Lin-PL Lin-LL
IB-PL — 6/11/11 12/8/7 13/11/9
IB-Mal 10/5/5 — 11/8/7 12/9/7
Lin-PL 4/8/9 5/8/9 — 14/13/11
Lin-LL 3/5/7 4/7/9 2/4/5 —

Despite being statistically non-significant most of the
time, the results are still quite informative and show
some important trends (which are likely to become
significant when increasing the number of data sets).
This becomes especially obvious from the pairwise
comparisons of the methods, summarized in Table 3.
From these comparisons, the following conclusions can
be drawn:

• Regarding the two instance-based learners, IB-PL
performs a bit worse in the complete ranking sce-
nario, but is better in the case of missing label
information. This is in perfect agreement with
our conjecture that the PL model is better suited
for learning from incomplete ranking data.

• Comparing the two generalized linear approaches,
our method based on the PL model seems to be
consistently better than Lin-LL (winning 14, 13
and 11 of the 16 data sets in the three scenarios,
respectively).

• Comparing the instance-based with the linear
methods, it can be seen that the former perform
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Table 2. Performance of the label ranking methods in terms of Kendall’s tau (in brackets the rank).
complete ranking 30% missing labels 60% missing labels

IB-PL IB-Mal Lin-PL Lin-LL IB-PL IB-Mal Lin-PL Lin-LL IB-PL IB-Mal Lin-PL Lin-LL
authorship .936(1) .936(2) .930(3) .657(4) .927(1) .913(2) .899(3) .656(4) .886(1) .849(2) .846(3) .650(4)
bodyfat .230(3) .229(4) .272(1) .266(2) .204(3) .198(4) .266(1) .251(2) .151(4) .160(3) .222(2) .241(1)
calhousing .326(2) .344(1) .220(4) .223(3) .303(2) .310(1) .229(3) .223(4) .259(2) .263(1) .229(3) .221(4)
cpu-small .495(2) .496(1) .426(3) .419(4) .477(1) .473(2) .418(4) .419(3) .437(1) .428(2) .412(4) .418(3)
elevators .721(2) .727(1) .712(3) .701(4) .702(2) .683(4) .706(1) .699(3) .633(3) .596(4) .704(1) .696(2)
fried .894(4) .900(3) .996(1) .989(2) .861(3) .850(4) .993(1) .989(2) .797(3) .777(4) .990(1) .987(2)
glass .841(2) .842(1) .825(3) .818(4) .809(3) .776(4) .825(1) .817(2) .675(3) .611(4) .807(2) .808(1)
housing .711(2) .736(1) .659(3) .626(4) .654(3) .669(1) .658(2) .625(4) .492(4) .543(3) .636(1) .614(2)
iris .960(1) .925(2) .832(3) .818(4) .926(1) .867(2) .823(3) .804(4) .868(1) .799(2) .778(3) .768(4)
pendigits .939(2) .941(1) .909(3) .814(4) .918(1) .902(3) .909(2) .802(4) .794(2) .781(4) .907(1) .787(3)
segment .950(1) .802(4) .902(2) .810(3) .874(2) .735(4) .895(1) .806(3) .674(3) .612(4) .888(1) .801(2)
stock .922(2) .925(1) .710(3) .696(4) .877(1) .855(2) .701(3) .691(4) .740(1) .724(2) .687(4) .689(3)
vehicle .859(1) .855(2) .838(3) .770(4) .838(1) .822(2) .817(3) .769(4) .765(2) .736(4) .804(1) .764(3)
vowel .851(2) .882(1) .586(4) .601(3) .785(2) .810(1) .581(4) .598(3) .588(3) .638(1) .575(4) .591(2)
wine .947(2) .944(3) .954(1) .942(4) .926(4) .930(3) .931(2) .941(1) .907(2) .893(4) .915(1) .894(3)
wisconsin .479(4) .501(3) .635(1) .542(2) .453(4) .464(3) .615(1) .533(2) .381(4) .399(3) .585(1) .518(2)
Avg. Rank 2.06 1.94 2.56 3.44 2.13 2.63 2.19 3.06 2.44 2.94 2.06 2.56

0% 10% 20% 30% 40% 50% 60% 70%
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

IB−PL (housing)

Lin−PL (housing)

Lin−PL (glass)

IB−PL (glass)

Figure 1. Ranking performance (in terms of Kendall’s tau)
as a function of the missing label rate.

a bit better in the complete ranking scenario, but
their performance drops more quickly in the pres-
ence of missing label information.

This last observation is plausible, too, and coherent
with the complementary nature of global and local
methods. Like in the case of conventional classifi-
cation, instance-based methods are advantageous for
problems requiring complex decision boundaries, for
which the strong bias of linear methods prevents them
from achieving a good separation. On the other hand,
if the linearity assumption is (at least approximately)
valid, better models can be learned with fewer data.
Correspondingly, instance-based learners are more sen-
sitive toward the amount of training data. Some ev-
idence in favor of this hypothesis is indeed provided
by the learning curves depicting the performance as a
function of the fraction of missing label information.
While the learning curves of the linear methods are of-
ten rather flat, showing a kind of saturation effect, they
are steeper for the instance-based approaches. This
suggests that additional label information is still ben-

eficial for these methods even when the linear meth-
ods, due to a lack of flexibility, are no longer able to
exploit and adapt to extra data. Typical examples for
the glass and the housing data are shown in Fig. 1.

As a nice feature of our approach, we already men-
tioned the possibility to complement a prediction by
a measure of reliability. Perhaps the simplest measure
of this kind is the probability of the prediction itself,
namely p∗ = P(π∗ |v∗). To test whether p∗ is indeed
a good indicator of the uncertainty of a prediction, we
used it to compute a kind of accuracy-rejection curve:
Using IB-PL in a leave-one-out cross validation, we
computed the accuracy of the prediction (in terms of
Kendall’s tau) and its reliability (in terms of p∗) for
each instance x. Subsequent to sorting the instances
in decreasing order of reliability, we plot the function
t 7→ f(t), where f(t) is the mean accuracy of the top
t percent of the instances. Given that p∗ is indeed a
good indicator of reliability, this curve should be de-
creasing, because the higher t, the more instances with
a low reliability are taken into consideration. This ex-
pectation is indeed confirmed for our data sets. Fig. 2
shows two exemplary curves for the glass and the hous-
ing data.

7. Conclusions and Future Work

Using the Plackett-Luce model as a model of the un-
derlying data generating process, we proposed new
methods for the problem of label ranking. The idea
of our first approach, an instance-based learning algo-
rithm, is to fit a locally constant model in the neighbor-
hood of a query instance. The same idea was already
proposed earlier, using the Mallows model instead of
the PL model. As we have seen, the performance of
the approaches is quite comparable. However, the PL
model seems preferable in the case of incomplete train-
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Figure 2. Accuracy-rejection curves computed on the basis
of P(π∗ | v∗).

ing data, not only computationally but also regarding
performance.

The idea of parameterizing the coefficients of the PL
model and expressing them as functions of the input
attributes has led to the second approach, namely fit-
ting a global model in the form of log-linear (utility)
functions. Empirically, we have shown that it com-
pares favorably with other methods for label ranking,
which are closely related in the sense of fitting the
same type of model.

Perhaps even more importantly, however, we consider
our approach as more solid from a theoretical point
of view. In fact, while existing methods are fitting
models based on criteria that are to some extent ad-
hoc, our probabilistic model provides the basis for a
theoretically sound prediction procedure in the form of
maximum likelihood estimation. Apart from making
model assumptions more explicit, it also has further
advantages. For example, it allows for complementing
predictions by diverse types of statistical information,
for example regarding the reliability of an estimation.

For future work, we plan to combine the two meth-
ods presented in this paper, the local and the global
one, into a local linear learning method. Similar to
methods like local linear regression, the idea is to esti-
mate a (generalized) linear model in a local way, i.e., in
the neighborhood of a query instance. From the point
of view of our instance-based approach, this means
replacing the assumption of a locally constant model
by the relaxed assumption of an approximately linear
model. Thus, we hope to combine the advantages of
both approaches.
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