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Abstract

We propose a generalization of multilabel
classification that we refer to as graded mul-
tilabel classification. The key idea is that,
instead of requesting a yes-no answer to the
question of class membership or, say, rele-
vance of a class label for an instance, we al-
low for a graded membership of an instance,
measured on an ordinal scale of membership
degrees. This extension is motivated by prac-
tical applications in which a graded or partial
class membership is natural. Apart from in-
troducing the basic setting, we propose two
general strategies for reducing graded multi-
label problems to conventional (multilabel)
classification problems. Moreover, we ad-
dress the question of how to extend perfor-
mance metrics commonly used in multila-
bel classification to the graded setting, and
present first experimental results.

1. Introduction

Problems of multilabel classification (MLC), in which
an instance may belong to several classes simultane-
ously or, say, in which more than one label can be at-
tached to a single instance, are ubiquitous in everyday
life: At IMDb, a movie can be categorized as action,
crime, and thriller, a CNN news report can be tagged
as people and political at the same time, etc. Corre-
spondingly, MLC has received increasing attention in
machine learning in recent years.

In this paper, we propose a generalization of MLC
that we shall refer to as graded multilabel classification
(GMLC). The key idea is that, instead of requesting a
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yes-no answer to the question of class membership or,
say, relevance of a class label for an instance, we allow
an instance to belong to a class to a certain degree. In
other words, we allow for graded class membership in
the sense of fuzzy set theory (Zadeh, 1965). In fact,
there are many applications for which this extension
seems to make perfect sense. In the case of movie gen-
res, for example, it is not always easy to say whether
or not a movie belongs to the category action, and
there are definitely examples which can be considered
as “almost action” or “somewhat action”. Another
obvious example comes from one of the benchmark
data sets in MLC, namely the emotions data (Tro-
hidis et al., 2008). Here, the problem is to label a
song according to the Tellegen-Watson-Clark model
of mood: amazed-surprised, happy-pleased, relaxing-
clam, quiet-still, sad-lonely, and angry-aggressive.

It is important to emphasize that the relevance of a
label is indeed gradual in the sense of fuzzy logic and
not uncertain in the sense of probability theory. The
latter would mean that, e.g., a song is either relax-
ing or it is not—one is only uncertain about which of
these two exclusive alternatives is correct. As opposed
to this, gradualness is caused by the vagueness of cat-
egories like “relaxing song” and “action movie”, and
means that one does not have to fully agree on one of
the alternatives. Instead, one can say that a song is
somewhere in-between (and can be certain about this).

As will be explained in more detail later on, our idea is
to replace simple “yes” or “no” labels by membership
degrees taken from a finite ordered scale such as

M = { not at all, somewhat, almost, fully }. (1)

Admittedly, graded multilabel data sets of that kind
are not yet widely available. We believe, however, that
this is a kind of hen and egg problem: As long as there
are no methods for learning from graded multilabel
data, new data sets will be created in the common
way, possibly forcing people to give a “yes” or “no”
answer even when they are hesitating.
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The rest of this paper is organized as follows: The
problem of multilabel classification is introduced in a
more formal way in Section 2. In Section 3, we propose
our graded generalization of MLC and, moreover, out-
line two different strategies for reducing GMLC prob-
lems to conventional (multilabel) classification prob-
lems. In Section 4, we address the question of how to
extend MLC evaluation metrics from the conventional
to the graded setting. Finally, Section 5 presents some
first experimental results.

2. Multilabel Classification

Let X denote an instance space and let L =
{λ1, λ2, . . . , λm} be a finite set of class labels. More-
over, suppose that each instance x ∈ X can be associ-
ated with a subset of labels L ∈ 2L; this subset is often
called the set of relevant labels, while the complement
L \ L is considered as irrelevant for x. Given train-
ing data in the form of a finite set T of observations
in the form of tuples (x, Lx) ∈ X × 2L, typically as-
sumed to be drawn independently from an (unknown)
probability distribution on X × 2L, the goal in multi-
label classification is to learn a classifier H : X −→ 2L

that generalizes well beyond these observations in the
sense of minimizing the expected prediction loss with
respect to a specific loss function; examples of com-
monly used loss functions include the subset zero-one
loss, which is 0 if H(x) = Lx and 1 otherwise, and the
Hamming loss that computes the percentage of labels
whose relevance is incorrectly predicted:

EH(H(x), Lx) =
1

|L|

∣

∣H(x)∆Lx

∣

∣, (2)

where ∆ is the symmetric difference between sets.

An MLC problem can be reduced to a conven-
tional classification problem in a straightforward way,
namely by considering each label subset L ∈ 2L as a
distinct (meta-)class. This approach is referred to as
label powerset (LP) in the literature. An obvious draw-
back of this approach is the potentially large number
of classes that one has to deal with in the newly gener-
ated problem; obviously, this number is 2|L| (or 2|L|−1
if the empty set is excluded as a prediction). This is
the reason why LP typically works well if the original
label set L is small but quickly deteriorates for larger
label sets (Tsoumakas & Vlahavas, 2007).

Another way of reducing multilabel to conventional
classification is offered by the binary relevance (BR)
approach. Here, a separate binary classifier Hi is
trained for each label λi ∈ L, reducing the super-
vision to information about the presence or absence
of this label while ignoring the other ones. For a

query instance x, this classifier is supposed to pre-
dict whether λi is relevant for x (Hi(x) = 1) or not
(Hi(x) = 0). A multilabel prediction for x is then
given by H(x) = {λi ∈ L |Hi(x) = 1}. Since binary
relevance learning treats every label independently of
all other labels, an obvious disadvantage of this ap-
proach is its ignorance of correlations and interdepen-
dencies between labels.

Many approaches to MLC learn a multilabel clas-
sifier H in an indirect way via a scoring function
f : X × L −→ R that assigns a real number to each
instance/label combination. The idea is that a score
f(x, λ) is in direct correspondence with the probabil-
ity that λ is relevant for x. Given a scoring function
of this type, multilabel prediction can be realized via
thresholding:

H(x) = {λ ∈ L | f(x, λ) ≥ t } ,

where t ∈ R is a threshold. As a byproduct, a scor-
ing function offers the possibility to produce a ranking
(weak order) �x of the class labels, simply by sorting
them according to their score:

λi �x λj ⇔ f(x, λi) ≥ f(x, λj) . (3)

Sometimes, this ranking is even more desirable as a
prediction, and indeed, there are several evaluation
metrics that compare a true label subset with a pre-
dicted ranking instead of a predicted label subset; an
example is the rank loss which computes the average
fraction of label pairs that are not correctly ordered:

ER(f, Lx) =

∑

(λ,λ′)∈Lx×Lx

S(f(x, λ), f(x, λ′))

|Lx| × |Lx|
,

where Lx = L \ Lx is the set of irrelevant labels and
S(u, v) = 1 if u < v, = 1/2 if u = v, and = 0 if
u > v. The idea to solve both problems simultane-
ously, ranking and MLC, has recently been addressed
in (Fürnkranz et al., 2008): A calibrated ranking is a
ranking with a “zero point” separating a positive (rel-
evant) part from a negative (irrelevant) one.

3. Graded Multilabel Classification

Generalizing the above setting of multilabel classifica-
tion, we now assume that each instance x ∈ X can
belong to each class λ ∈ L to a certain degree. In
other words, the set Lx of relevant labels is now a
fuzzy subset of L. This fuzzy set is characterized by a
membership function, namely an L −→ M mapping,
where M is the set of graded membership degrees. For
notational simplicity, we shall not distinguish between
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Figure 1. Vertical reduction, viz. prediction of membership
degree (ordinate) for each label (abscissa).

the fuzzy set Lx and its membership function, and de-
note by Lx(λ) the degree of membership of the label
λ ∈ L in the fuzzy set Lx.

In fuzzy set theory, the set of membership degrees is
supposed to form a complete lattice and is normally
taken as the unit interval (i.e., M = [0, 1] endowed
with the standard order). Here, however, we prefer an
ordinal scale of membership degrees, that is, a finite
ordered set of membership degrees such as (1). More
generally, we assume that M = {m0,m1, . . . ,mk},
where m0 < m1 < . . . < mk (and m0 = 0 and mk = 1
have the special meaning of zero and full membership).
In the context of multilabel classification, an ordinal
membership scale is arguably more convenient from a
practical point of view, especially with regard to data
acquisition. In fact, people often prefer to give ratings
on an ordinal scale like (1) instead of choosing precise
numbers on a cardinal scale.

The goal, now, is to learn a mapping H : X −→ F(L),
where F(L) is the class of fuzzy subsets of L (with
membership degrees in M). Following the general idea
of reduction (Balcan et al., 2008), we seek to make
GMLC problems amenable to conventional multilabel
methods via suitable transformations. There are two
more or less obvious possibilities to reduce graded mul-
tilabel classification to conventional (multilabel) clas-
sification. In agreement with the distinction between
the “vertical” description of a fuzzy subset F of a set
U (through the membership function, i.e., by specify-
ing the degree of membership F (u) for each element
u ∈ U) and the “horizontal” description (via level cuts
[F ]α = {u ∈ U |F (u) ≥ α}), we distinguish between a
vertical and a horizontal reduction.

3.1. Vertical Reduction

Recall the binary relevance approach to conventional
MLC: For each label λi ∈ L, a separate binary classi-

Figure 2. Horizontal reduction, viz. prediction of a subset
of labels (indicated by black circles) on each level.

fier Hi is trained to predict whether this label is rele-
vant (Hi(x) = 1) or not (Hi(x) = 0) for a query in-
stance x ∈ X. Generalizing this approach to GMLC,
the idea is to induce a classifier

Hi : X −→ M (4)

for each label λi. For each query instance x ∈ X, this
classifier is supposed to predict the degree of member-
ship of λi in the fuzzy set of labels Lx. Instead of a bi-
nary classification problem, as in MLC, each classifier
Hi is now solving a multi-class problem. Since the tar-
get space M has an ordinal structure, these problems
are ordinal classification problems. In other words, the
vertical reduction of a GMLC problem eventually leads
to solving a set of m (non-independent) ordinal classi-
fication problems; see Fig. 1 for an illustration.

Just like simple binary problems, ordinal classification
problems are often solved indirectly via “scoring plus
thresholding”: First, a scoring function f(·) is learned,
and k thresholds t1, . . . , tk are determined; then, for
an instance x, the i-th class is predicted if f(x, λi)
is between ti−1 and ti. Of course, if classifiers (4) are
learned in this way, i.e., by inducing a scoring function
f(·, λi) for each label λi, then these scoring functions
can also be used to predict a ranking (3).

3.2. Horizontal Reduction

From fuzzy set theory, it is well-known that a fuzzy
set F can be represented “horizontally” in terms of
its level-cuts. This representation suggests another
decomposition of a GMLC problem: For each level
α ∈ {m1,m2, . . . ,mk}, learn the mapping

H(α) : X −→ 2M , x 7→ [Lx]α . (5)

Obviously, each of these problems is a standard MLC
problem, since the level-cuts [Lx]α are standard sub-
sets of the label set L. Thus, the horizontal reduction
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comes down to solving k standard MLC problems; see
Fig. 2 for an illustration.

It is worth mentioning that this decomposition comes
with a special challenge. In fact, since level-cuts are
nested in the sense that [F ]α ⊂ [F ]β for β < α, the
k MLC problems are not independent of each other.
Instead, the predictions should be monotone in the
sense that

(H(mj)(x) = 1) ⇒ (H(mj−1)(x) = 1) (6)

for all j ∈ {2, . . . , k}. Thus, whenever a label λi is pre-
dicted to be in the mj-cut of the fuzzy label set Lx as-
sociated with x, it must also be in all lower level-cuts.
Satisfying this requirement is a non-trivial problem. In
particular, (6) will normally not be guaranteed when
solving the k problems independently of each other.

Once an ensemble of k multilabel classifiers
H(m1), . . . ,H(mk) has been trained, predictions
can be obtained as follows:

H(x)(λ) = max{mi ∈ M |λ ∈ H(mi)(x) } (7)

Thus, the degree of membership of a label λ ∈ L in
the predicted fuzzy set of labels associated with x is
given by the maximum degree mi ∈ M for which λ is
still in the predicted mi-cut of this set.

The prediction of a ranking (3) is arguably less obvious
in the case of the horizontal decomposition. Suppose
that f (m1), . . . , f (mk) are scoring functions trained on
the k level cuts, using a conventional MLC method.
As a counterpart to the monotonicity condition (6),
we should require

f (m1)(x, λ) ≥ f (m2)(x, λ) ≥ . . . ≥ f (mk)(x, λ) (8)

for all x ∈ X and λ ∈ L. In fact, interpreting
f (mi)(x, λ) as a measure of how likely λ is a relevant
label on level mi, this condition follows naturally from
[Lx]m1

⊃ [Lx]m2
⊃ . . . ⊃ [Lx]mk

. On each level mi,

the function f (mi)(x, ·) induces a ranking �
(mi)
x via

(3), however, the identity �
(mi)
x ≡�

(mj)
x is of course

not guaranteed; that is, �
(mi)
x may differ from �

(mj)
x

for 1 ≤ i 6= j ≤ k.

To obtain a global ranking, the level-wise rankings

�
(mi)
x need to be aggregated into a single one. To

this end, we propose to score a label λ by

f(x, λ) =

k
∑

i=1

f (mi)(x, λ) . (9)

This aggregation is especially reasonable if the scores
f (mi)(x, λ) can be interpreted as probabilities of rel-

evance P(λ ∈ [Lx]mi
). Then, f(x, λ) simply corre-

sponds to the expected level of x, since

k
∑

i=1

f (mi)(x, λ) =
k
∑

i=1

P(λ ∈ [Lx]mi
) =

=
k
∑

i=1

P(Lx(λ) ≥ mi) =
k
∑

i=1

i · P(Lx(λ) = mi)

Note, however, that we simply equated the levels mi

with the numbers i in this derivation, i.e., the ordinal
scale L was implicitly embedded in a numerical scale
by the mapping mi 7→ i (on L itself, an averaging op-
eration of this kind is not even defined). Despite being
critical from a theoretical point of view, this embed-
ding is often used in ordinal classification, for exam-
ple when computing the absolute error AE(mi,mj) =
|i−j| as a loss function (Lin & Li, 2007). Interestingly,
the absolute error is minimized (in expectation) by the
median and, moreover, this estimation is invariant to-
ward rescaling (Berger, 1985). Thus, it does actually
not depend on the concrete embedding chosen. Seen
from this point of view, the median appears to be a
theoretically more solid score than the mean value (9).
However, it produces many ties, which is disadvanta-
geous from a ranking point of view. This problem is
avoided by (9), which can be seen an approximation
of the median that breaks ties in a reasonable way.

3.3. Combination of Both Reductions

As mentioned above, the binary relevance approach
is a standard (meta-)technique for solving MLC prob-
lems. Consequently, it can also be applied to each
problem (5) produced by the horizontal reduction.
Since BR can again be seen as a “vertical” decompo-
sition of a regular MLC problem, one thus obtains a
combination of horizontal and vertical decomposition:
first horizontal, then vertical.

Likewise, the two types of reduction can be combined
the other way around, first vertical and then hori-
zontal. This is done by solving the ordinal classifi-
cation problems produced by the vertical reduction
by means of a “horizontal” decomposition, namely
a meta-technique that has been proposed by Frank
& Hall (2001): Given an ordered set of class labels
M = {m0,m1, . . . ,mk}, the idea is to train k binary
classifiers. The i-th classifier considers the instances
with label m0, . . . ,mi−1 as positive and those with la-
bel mi, . . . ,mk as negative.

Interestingly, both combinations eventually coincide in
the sense of ending up with the same binary clas-
sification problems. Roughly speaking, a single bi-
nary problem is solved for each label/level combination
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(λi,mj) ∈ L×M (each circle in the picture in Fig. 2),
namely the problem to decide whether Lx(λi) ≤ mj

or Lx(λi) > mj . Any difference between the two ap-
proaches is then due to different ways of aggregating
the predictions of the binary classifiers. In principle,
however, such differences can only occur in the case of
inconsistencies, i.e., if the monotonicity condition (6)
is violated.

3.4. Generalizing IBLR-ML

Our discussion so far has been restricted to meta-
techniques for reducing GMLC to MLC problems,
without looking at concrete methods. Nevertheless,
there are several methods that can be generalized im-
mediately from the binary to the gradual case. As an
example, we mention the IBLR-ML method that will
also be used in our experiments later on. This method,
which was recently proposed in (Cheng & Hüllermeier,
2009), combines instance-based learning with logistic
regression and again trains one classifier Hi for each
label. For the i-th label λi, this classifier is derived
from the logistic regression equation

log

(

π
(i)
0

1 − π
(i)
0

)

= ω
(i)
0 +

m
∑

j=1

γ
(i)
j · ω

(i)
+j(x0) , (10)

where π
(i)
0 denotes the (posterior) probability that λi

is relevant for x0, and

ω
(i)
+j(x0) =

∑

x∈N (x0)

κ(x0,x) · yj(x) (11)

is a summary of the presence of the j-th label λj in the
neighborhood of x0; here, κ is a kernel function, such
as the (data-dependent) “KNN kernel” κ(x0,xi) = 1
if xi ∈ Nk(x0) and = 0 otherwise, where Nk(x0)
is the set of k nearest neighbors of x0. Moreover,
yj(x) = +1 if λj is present (relevant) for the neigh-
bor x, and yj(x) = −1 in case it is absent (non-
relevant). Obviously, this approach is able to cap-
ture interdependencies between class labels: The es-

timated coefficient γ
(i)
j indicates to what extent the

relevance of label λi is influenced by the relevance of

λj . A value γ
(i)
j > 0 means that the presence of λj

makes the relevance of λi more likely, i.e., there is a
positive correlation. Correspondingly, a negative co-
efficient would indicate a negative correlation. Given
a query instance x0, a multilabel prediction is made
on the basis of the predicted posterior probabilities of

relevance: H(x0) = {λi ∈ L |π
(i)
0 > 1/2 }.

This approach can be generalized to the GMLC set-
ting using both the horizontal and the vertical reduc-
tion. The vertical reduction leads to solving an or-
dinal instead of a binary logistic regression problem

for each label, while the horizontal reduction comes
down to solving the following k multilabel problems
(r = 1, . . . , k):

log

(

π
(i,r)
0

1 − π
(i,r)
0

)

= ω
(i,r)
0 +

m
∑

j=1

γ
(i,r)
j ω

(i,r)
+j (x0) (12)

Recall, however, that these problems are not indepen-
dent of each other. Solving them simultaneously so
as to guarantee the monotonicity constraint (6) is an
interesting but non-trivial task. In the experiments
in Section 5, we therefore derived independent predic-
tions and simply combined them by (7).

4. Loss Functions

As mentioned before, a number of different loss func-
tions have already been proposed within the setting
of MLC. In principle, all these functions can be gen-
eralized so as to make them applicable to the setting
of GMLC. In this section, we propose extensions of
some important and frequently used measures. More-
over, we address the question of how to handle these
extensions in the context of the horizontal and vertical
reduction technique, respectively.

4.1. Representation of Generalized Losses

To generalize the Hamming loss (2), it is necessary to
replace the symmetric difference operator defined on
sets, ∆, by the symmetric difference between two fuzzy
sets. This can be done, for example, by averaging over
the symmetric differences of the corresponding level-
cuts, which in our case leads to

E∗
H(H(x), Lx) =

∑k
i=1

∣

∣[H(x)]mi
∆[Lx]mi

∣

∣

k|L|
. (13)

Note that this “horizontal” computation can be re-
placed by an equivalent “vertical” one, namely

E∗
H(H(x), Lx) =

∑|L|
i=1 AE(H(x)(λi), Lx(λi))

k|L|
, (14)

where AE(·) is the absolute error of a predicted mem-
bership degree which, as mentioned above, is defined
by AE(mi,mj) = |i − j|. In other words, minimiz-
ing the symmetric difference level-wise is equivalent to
minimizing the absolute error label-wise.

It is worth to mention that the existence of an equiv-
alent horizontal and vertical representation of a loss
function, like in the case of (13) and (14), is not self-
evident. For example, replacing in (14) the absolute
error on the ordinal scale M by the simple 0/1 loss
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leads to

E∗
0/1(H(x), Lx) =

1

|L|

|L|
∑

i=1

{

0 H(x)(λi) = Lx(λi)
1 H(x)(λi) 6= Lx(λi)

.

Just like (14), this is a typical vertical expression of a
loss function, that is, an expression of the form

A
(

{` (H(x)(λi), Lx(λi))}
|L|
i=1

)

,

where `(·) is a loss defined on L and A is an aggre-
gation operator. Interestingly, E∗

0/1 does not have an
equivalent horizontal representation. Thus, there is
provably no loss function L(·) on 2L (and aggregation
A) such that

E∗
0/1(H(x), Lx) = A

(

{L ([H(x)]mi
, [Lx]mi

)}k
i=1

)

.

This observation has an important implication.
Namely, if the loss function to be minimized has a
vertical but not a horizontal representation, then a
vertical decomposition of the learning problem is ar-
guably more self-evident than a horizontal one, and
vice versa. Strictly speaking, the non-existence of an
equivalent representation does of course not exclude
the existence of another loss function and aggregation
operator producing the same predictions. Such alter-
natives, however, will normally be less obvious.

As an example of a loss function that lends itself to
a horizontal representation, consider a variant of the
Hamming loss based on the well-known Jaccard-index:

EJ(H(x), Lx) =
|H(x) ∩ Lx|

|H(x) ∪ Lx|
(15)

This variant avoids a certain disadvantage of the Ham-
ming loss, which treats relevant and non-relevant la-
bels in a symmetric way even though the former are
typically less numerous than the latter, thereby pro-
ducing a bias toward the prediction of non-relevance.
A natural generalization of this measure is obtained
by averaging (15) over the levels:

E∗
J (H(x), Lx) =

1

k

k
∑

i=1

∣

∣[H(x)]mi
∩ [Lx]mi

∣

∣

∣

∣[H(x)]mi
∪ [Lx]mi

∣

∣

(16)

This extension, however, does not admit an equiva-
lent vertical representation, which is plausible since
the Jaccard-index is indeed a genuine set measure.

4.2. Rank Loss

The rank loss ER can be generalized in a canonical
way by the so-called C-index, which is commonly used

as a measure of concordance in statistics (Gnen &
Heller, 2005), and which is essentially equivalent to the
pairwise ranking error introduced in (Herbrich et al.,
2000):

E∗
R(f, Lx) =

∑

i<j

∑

(λ,λ′)∈Mi×Mj
S(f(x, λ), f(x, λ′))

∑

i<j |Mi| × |Mj |
,

where Mi = {λ ∈ L |Lx(λ) = mi}. As can be seen,
the C-index is the fraction of labels that are correctly
ordered by f(·): If label λ′ has a higher degree of mem-
bership in Lx than λ, then the former should be ranked
above the latter. It is also worth mentioning that
the C-index has recently been proposed as a perfor-
mance measure in the problem of multipartite ranking
(Fürnkranz et al., 2009), and indeed, the problem here
can be considered as a problem of that kind when in-
terpreting {M0,M1, . . . ,Mk} as an ordered partition
of the label set L.

Other ranking losses proposed in the literature can be
generalized, too. For example, the one error checks
whether the top-ranked label is relevant or not:

E1E(f, Lx) =

{

0 arg maxλ∈L f(x, λ) ∈ Lx

1 otherwise

A natural generalization of this measure is obtained
on the basis of the degree of membership of the top-
ranked label in Lx:

E∗
1E(f, Lx) = 1 − Lx

(

arg max
λ∈L

f(x, λ)

)

.

5. Experimental Study

An experimental validation of the methods proposed in
this paper is not at all straightforward. First, since we
introduced a new machine learning problem, no bench-
mark data sets can be found so far. Essentially for the
same reason, there are no existing methods to be used
for comparison. The two reduction schemes proposed
in Section 3, vertical and horizontal, are not easily
comparable either, since these are meta-techniques us-
ing different types of base learners.

For these reasons, we decided to focus on another as-
pect, namely the general usefulness of the extended
setting that we proposed in this paper. More specif-
ically, our idea is to provide empirical evidence for
the claim that allowing a user to label instances on a
graded scale does provide useful extra information. In
a sense, this claim is trivial if a prediction on a graded
scale is eventually needed. For example, a reviewer
recommendation (which can be seen as an estimation
of the quality of a paper) on an ordered scale with
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labels such as “weak accept” and “strong accept” is
normally more useful than just a “yes” or “no” answer
to the question of acceptance.

However, we claim that training a learner on graded
data can be useful even if only a binary prediction is
eventually requested. Intuitively, this claim derives
from the simple observation that graded data provides
more information than binary data, which can be help-
ful, e.g., to determine proper decision boundaries.

5.1. Data

In light of the aforementioned lack of benchmark data,
we used a data set from another research field, namely
social psychology (Abele & Stief, 2004).1 This data
set, called BeLa-E, consists of 1930 instances and 50
attributes. Each instance corresponds to a graduate
student. The first attribute is the sex of the student
and the second one the age. Each of the other 48 at-
tributes is a graded degree of importance of different
properties of the future job, evaluated by the student
on an ordinal scale with 5 levels ranging from 1 (com-
pletely unimportant) to 5 (very important). Exam-
ples of such properties include “reputation”, “safety”,
“high income” and “friendly colleagues”. Thus, every
student was asked how important he or she considers
these properties to be, and the student answered by
assigning one of the aforementioned 5 levels.

On the basis of this data set, we generated (graded)
MLC problems as follows: m of the above 48 attributes
were randomly selected as the set of class labels, while
all remaining m− 48 attributes plus the student’s sex
and age were taken as predictive features. The goal,
then, is to train an MLC model that takes the features
as input and produces a prediction of the relevance of
the class labels as output.

Moreover, for every GMLC problem thus obtained, a
binary version is produced by mimicking a student who
is forced to answer either yes or no: The graded levels
1 and 2 are mapped to “No”, the levels 4 and 5 are
mapped to “Yes”, and a coin is flipped for level 3.

5.2. Methods

As multilabel classifiers we used the IBLR-ML method
outlined in Section 3.4 and, moreover, binary relevance
learning with 10-nearest neighbor classification (BR-
10NN) as base learner. Two types of learning are
distinguished, binary and graded: In binary learning,
the original data is first binarized as explained above
(turning graded into 0/1 answers). Then, the multila-

1The data set is available online at http://www.
uni-marburg.de/fb12/kebi/research.

bel classifier is trained on this data and used to make
binary multilabel predictions. In graded learning, a
GMLC classifier is trained on the original (graded)
data, using the horizontal reduction technique (for the
BR learners automatically combined with the vertical
reduction). The graded relevance predictions of these
learners are then mapped to binary relevance degrees
at the very end, using the same M −→ {0, 1} mapping
(randomized for label 3) as used in binary learning at
the beginning. Eventually, both types of learning thus
produce binary relevance predictions and, therefore,
can be compared with each other.

5.3. Results

Each method was evaluated on a single problem in
terms of a 10-fold cross validation. These evaluations
were then averaged over a total number of 50 randomly
generated problems. While averaging the performance
over different data sets is questionable in general, we
consider it legitimate in our case. In fact, all data sets
are actually variants of the same problem, and indeed,
the standard deviation of the performance was rather
small throughout.

Table 1 summarizes the performance of the different
methods for m = 5 and m = 10 in terms of the Ham-
ming loss, subset zero-one loss, rank loss and C-index
as performance metrics. As can be seen, the use of
graded training data improves performance through-
out, regardless of the learning method and the loss
function. Comparing the respective mean values in
terms of a paired t-test, the differences are significant
at a significance level of 5%.

Note that, as an extension of the rank loss, the C-index
is actually not intended for binary learning. We still
included it, as it only requires a predicted ranking and
a ground-truth labeling as input; thus, it can also be
derived for the binary learner. Of course, this learner
is at a disadvantage here, and indeed, the gains of the
gradual learner for the C-index are slightly higher than
those for the rank loss.

6. Summary and Conclusions

In this paper, we have proposed an extension of con-
ventional multilabel classification, called graded multi-
label classification (GMLC). The basic idea of GMLC
is that the membership of an instance in a class or,
say, the relevance of a label for an instance, is not a
matter of “yes” or “no”. Instead, the membership is
measured on a graded scale, thus allowing for inter-
mediate degrees of relevance. Here, we have focused
on an ordinal scale as a special case, though numeric
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Table 1. Performance (mean and standard deviation) in the case of m = 5 labels (above) and m = 10 labels (below).
IBLR-ML BR-10NN

binary graded binary graded
Hamming loss 0.245±0.048 0.219±0.042 0.220±0.051 0.213±0.052

rank loss 0.190±0.062 0.180±0.057 0.328±0.115 0.310±0.104
C-index 0.204±0.047 0.183±0.045 0.381±0.089 0.361±0.080

subset zero-one loss 0.736±0.093 0.695±0.078 0.857±0.051 0.808±0.070
Hamming loss 0.225±0.017 0.207±0.018 0.230±0.018 0.217±0.018

rank loss 0.169±0.029 0.157±0.021 0.225±0.040 0.154±0.020
C-index 0.190±0.012 0.178±0.019 0.237±0.011 0.171±0.016

subset zero-one loss 0.908±0.028 0.875±0.042 0.913±0.022 0.893±0.034

scales could in principle be used as well. In any case,
a generalization of this kind appears to be useful and
reasonable from a practical point of view.

Moreover, we have introduced two meta-techniques for
reducing GMLC problems to existing machine learning
problems, namely a vertical and a horizontal decom-
position scheme. Whereas the former turns a GMLC
problem into a set of ordinal classification problems,
one for each label, the latter leads to solving a set of
conventional multilabel problems, one for each level of
the ordinal scale. In the context of these two tech-
niques, we have also discussed the extension of MLC
loss functions to the graded case.

Experimentally, we have shown that graded relevance
does provide useful extra information from a learn-
ing point of view, even if only a binary prediction
is requested. Collecting real-world GMLC data and
complementing this study by further experiments is
planned as future work. Besides, the GMLC frame-
work gives rise to a number of interesting theoreti-
cal challenges, including but not limited to the simul-
taneous, monotonicity-preserving solution of the sub-
problems produced by our reduction schemes.
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