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Abstract— We present a novel approach to preference-based
reinforcement learning, namely a preference-based variant of
a direct policy search method based on evolutionary opti-
mization. The core of our approach is a preference-based
racing algorithm that selects the best among a given set
of candidate policies with high probability. To this end, the
algorithm operates on a suitable ordinal preference structure
and only uses pairwise comparisons between sample rollouts of
the policies. We present first experimental studies showing that
our approach performs well in practice.

I. INTRODUCTION

Preference-based reinforcement learning (PBRL) is a
novel research direction combining reinforcement learning
(RL) and preference learning [1]. It aims at extending
existing RL methods so as to make them amenable to
training information and external feedback more general than
numerical rewards, which are often difficult to obtain or
expensive to compute. For example, what is the cost of a
patient’s death in a medical treatment?

Akrour et al. [2] and Cheng et al. [3] tackle the problem of
learning policies solely on the basis of pairwise comparisons
between trajectories, suggesting that one system behavior is
preferred to another one but without committing to precise
numerical rewards. Building on novel methods for preference
learning, this is accomplished by providing the RL agent
with qualitative policy models, such as ranking functions.
More specifically, Cheng at al. train a model that ranks
actions given state, using a method called label ranking.
Their approach generalizes classification-based approximate
policy iteration [4]. Instead of ranking actions given states,
Akrour et al. exploit preferences on trajectories in order to
learn a model that ranks complete policies.

In this paper, we present a preference-based extension of
evolutionary direct policy search (EDPS) as proposed by
Heidrich-Meisner and Igel [5]. As a direct policy search
method, it shares commonalities with the approach by
Akrour et al. [2], but also differs in several respects. In
particular, their approach (as well as follow-up work such as
[6]) is arguably more specialized and tailored for applications
in robotics, in which a user interacts with the learner in an
iterative process. Moreover, policy search is not performed
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in a parametrized policy space directly but in a feature space
capturing important background knowledge about the task to
be solved.

EDPS casts policy learning as a search problem in a
parametric policy space, where the function to be optimized
is a performance measure like expected total reward, and
evolution strategies (ES) such as CMA-ES [7] are used
as optimizers. Moreover, since the evaluation of a policy
can only be done approximately, namely in terms of a
finite number of rollouts, the authors make use of racing
algorithms to control this number in an adaptive manner.
These algorithms return a sufficiently reliable ranking over
the current set of policies (candidate solutions), which is then
used by the ES for updating its parameters and population.
A key idea of our approach is to extend EDPS by replacing
the value-based racing algorithm with a preference-based
one. Correspondingly, the development of a preference-based
racing algorithm can be seen as a core contribution of this
paper.

In the next section, we briefly overview the EDPS frame-
work for policy learning. Our preference-based generaliza-
tion of this framework is introduced in Section III. Experi-
ments are presented in Section IV, and Section V concludes
the paper.

II. EVOLUTIONARY DIRECT POLICY SEARCH (EDPS)

We briefly outline the evolutionary direct policy search
(EDPS) approach in Markov Decision Processes (MDP)1 as
introduced in [5]. Assume a parametric policy space Π =
{πΘ |Θ ∈ Rp} to be given, where Θ is the parameter vector.
Searching a good policy can be seen as an optimization
problem where the search space is the parameter space
and the target function is a policy performance evaluation,
such as expected total reward. To solve this optimization
task, Heidrich-Meisner and Igel [5] make use of evolution
strategies [8], hence the name EDPS.

Evolution strategies in general iterate the following steps:
1) Generate a population of candidate solutions (in this

case, a set of policies with different parameters).
2) Evaluate the candidate solutions (estimate the perfor-

mance of the policies based on simulations/histories).
3) Select the best µ individuals based on their fitness and

use them to seed the next generation.

1We will use the standard notation for MDPs, thus it is a 4-tuple
M = (S,A,P, r), where S is the (possibly infinite) state space and A the
(possibly infinite) set of actions. P : S × S ×A → [0, 1] is the transition
probability that defines the random transitions s′ ∼ P(· | s, a) from a state
s applying the action a, and r : S × A → R is the reward function, i.e.,
r(s, a) defines the reward for taking action a ∈ A in state s ∈ S.



From a practical point of view, the number of simulations
in the second step is crucial: On the one hand, the learning
process gets slow if it is large, while on the other hand, the
ranking over the current population is not reliable enough
if the number of rollouts is too small; in that case, there is
a danger of selecting a suboptimal subset of the offspring
population instead of the best µ ones. Therefore, Heidrich-
Meisner and Igel [5] propose to apply an adaptive uncertainty
handling scheme, called racing algorithm, for controlling the
size of rollout sets in an adaptive manner.

A. Racing

The racing framework is an uncertainty handling scheme
introduced in [9], [10]. Given K random variables with finite
expected values, the goal is to select the µ best ones, i.e.,
those having the highest expected value, with probability at
least 1− δ. In addition, there is an upper bound nmax on the
number of realizations a random variable is allowed to sam-
ple. For example, the Hoeffding race algorithm constructs
confidence bounds for the empirical mean estimates based
on the Hoeffding bound [11] and eliminates those random
variables from sampling that are either among the best µ
ones or among the worst K − µ ones with high probability.
The elimination rule based on the confidence intervals can
be specified as follows: If the upper confidence bound for a
particular random variables is smaller than the lower bound
of K − µ random variables, then it can be discarded with
high probability; the inclusion of a random variable can be
decided analogously.

Regarding EDPS, the random samples correspond to the
outcomes of the simulations (e.g., the sum of rewards in-
curred following a policy) and the means to be estimated
are indeed the performances of the polices in terms of the
performance evaluation used. From this point of view, doing
a simulation in an MDP by following policy π is equivalent
to drawing an example from a probability distribution Pπ .
Consequently, a policy along with an MDP and initial distri-
bution can simply be seen as a random variable. Therefore,
we shall subsequently consider the problem of comparing
random variables that are denoted by X1, · · · , XK .

III. PREFERENCE-BASED EDPS

The preference-based policy learning settings considered
in [12], [2] proceed from a (possibly partial) preference
relation ≺ over histories, and the goal is to find a pol-
icy which tends to generate preferred histories with high
probability. In this regard, it is notable that, in the EDPS
framework, the precise values of the function to be optimized
(in this case the expected total rewards) are actually not used
by the evolutionary optimizer. Instead, for seeding the next
generation, the ES only needs the ranking of the candidate
solutions. The values are only used by the racing algorithm
in order to produce this ranking. Consequently, an obvious
approach to realizing the idea of a purely preference-based
version of evolutionary direct policy search (PB-EDPS) is
to replace the original racing algorithm (line step 3) by a
preference-based racing algorithm that only uses pairwise

comparisons between policies (or, more specifically, sample
histories generated from these policies). We introduce a
racing algorithm of this kind in Section III-A.

A main prerequisite of such an algorithm is a “lifting”
of the preference relation ≺ on the space of histories to
a preference relation � on the space of policies; in fact,
without a relation of that kind, the problem of ranking
policies is not even well-defined.

A natural definition of the preference relation � that we
shall adopt in this paper is as follows:

X � Y if and only if P(Y ≺ X) < P(X ≺ Y ) ,

where P(Y ≺ X) denotes the probability that the realization
of X is preferred (with respect to ≺) to the realization of
Y . Despite the appeal of � as an ordinal decision model,
this relation is not necessarily transitive and may even have
cycles [13]. Due to preferential cycles, the (racing) problem
of selecting the µ best options may still not be well-defined
for � as the underlying preference relation. To overcome
this difficulty, we refer to the Copeland relation �C as a
surrogate. For a set X = {X1, . . . , XK} of random variables,
it is defined as follows [14]: Xi �C Xj if and only if di <
dj , where di = #{k : Xk � Xi, Xk ∈ X}. Its interpretation
is again simple: an option Xi is preferred to Xj whenever
Xi “beats” (w.r.t. �) more options than Xj does. Since the
preference relation�C , which is “contextualized” by the set
X of random variables, has a numeric representation in terms
of the di, it is a total preorder.

A. Preference-based Racing

Our preference-based racing (PBR) setup assumes
K random variables X1, . . . , XK with distributions
PX1

, . . . ,PXK
, respectively, and these random variables

take values in a partially ordered set (Ω,≺). The goal of
our PBR algorithm is to find the best µ random variables
with respect to the surrogate decision model �C introduced
in Section III. This leads to the following optimization task:∑

i∈I

∑
j 6=i

I{Xj � Xi} −→ max
I⊆[K]: |I|=µ

(1)

Our solution to this optimization task under uncertainty loops
over the following steps:

1) Draw samples from each random variables that are
active

2) Calculate ŝi,j = 1
ninj

∑ni

`=1

∑nj

`′=1 I{x
(`)
i ≺ x

(e′)
j }

where {x(1)
i , . . . , x

(ni)
i } is the sample set drawn from

Xi so far2.
3) Calculate confidence interval ci,j for ŝi,j by using

Hoeffding bound (with a δ confidence parameter that
is given by the user)

4) Define d̂i = {j|ŝi,j − ci,j > 1/2} that is a lower
bound of di

5) Based on d̂i, one can eliminate some X1, · · · , XK

form sampling based on similar rules like in the value
based case (see section II-A)

2It is clear that P (Xi ≺ Xj) ≈ ŝi,j based on finite sample sets.
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Fig. 1. Illustration of patient status under different treatment policies. On the x-axis is the tumor size after 6 and 12 months, on the y-axis the highest
toxicity during the treatment. The death rates are shown in parentheses at the upper right corner.

6) If the number of iterations is bigger than nmax

then stop and return the current approximation of
Copeland’s ranking based on d̂1, · · · , d̂K .

One can show that the PBR algorithm returns the best
µ random variables with respect to the surrogate decision
model �C with high probability if nmax is set big enough.
What is more, an expected sample complexity analysis can
be done based on Even-Dar et al. [15].

IV. EXPERIMENTS ON MEDICAL TREATMENT DESIGN

Here, we tackle a problem that has been used in previous
work on preference-based RL [3], [6], namely the medical
treatment design for cancer clinical trials. The problem is
to learn an optimal treatment policy π mapping states s =
(S,X) ∈ S = R2

+, where S is the tumor size and X the
toxicity (inversely related to the wellness) of the patient, to
actions in the form of a dosage level d ∈ [0, 1]; the drug is
given once a month, and a patient is simulated over a fixed
time horizon of six and twelve months. A corresponding
simulation model (based on first-order difference equations)
was originally introduced in [16].

As argued by Cheng et al. [3], the numerical rewards
assigned to different health states of a patient (including
the extreme case of death) are quite arbitrary in this model.
Therefore, the authors propose an alternative formalization,
in which histories are compared in a qualitative way: h′ � h
if the patient survives in h but not in h′, and both histories
are incomparable (h′⊥h) if the patient does neither survive
in h′ nor in h. Otherwise, if the patient survives in both
histories, let CX and C ′X denote, respectively, the maximal
toxicity during the 6 and 12 months of treatment in h and
h′, and CS and C ′S the respective size of the tumor at the
end of the therapy. Then, preference is defined via Pareto
dominance: h′ � h if (and only if) CX ≤ C ′X and CS ≤ C ′S .
Let us again emphasize that � thus defined, as well as
the induced strict order ≺, are only partial order relations.
We used the same experimental setup, except for adding

Gaussian noise N (0, 0.01) to the state observation [17],
thereby making the underlying MDP partially observable.

We run the implementation of [5] with the Hoeffding race
algorithm and CMA-ES [7]; we refer to this implementation
as EDPS. We set λ = 6 and µ = 3 according to [7].
The initial global step size in CMA-ES was selected from
{0.1, 1, 5, 10, 15, 25, 50, 100}. The racing algorithm has two
hyperparameters, the confidence term δ and the maximum
number of samples allowed for a single option, nmax. We
optimized δ in the range {0.01, 0.05, 0.1}, while nmax was
initialized with 40 and then adapted using the technique
of [5]. All parameter values were determined by means of
grid search, repeating the training process in each grid point
(parameter setting) 100 times, and evaluating each model on
300 patients in terms of expected utility; we found σ0 = 2,
δ = 0.1 to be optimal.

Our preference-based variant PB-EDPS as introduced in
Section III was run with the same parameters. We used
a sigmoidal policy space defined as πΘ(s) = 1/(1 +
exp(−ΘT s)). As baseline methods, we run the discrete
uniform random policy (randomly choosing a dosage d ∈
D′ = {0.1, 0.4, 0.7, 1.0} each month) and the constant
policies that take the same dosage d ∈ D′ independently of
the patient’s health state. As a more sophisticated baseline,
we furthermore used SARSA(λ) [18] with discrete action
set according to the original setup3. Finally, we included the
preference-based policy iteration (PBPI) method of [12] with
the parameters reported by the authors. Each policy learning
method was run until reaching a limit 5000 training episodes.

We evaluated each policy on 300 virtual patients and
derived averages for CX , the maximum toxicity level, as
well as CS , the tumor size at the end of the treatment.
We repeated this process 100 times for each policy search

3We used an ε-greedy policy for exploration. Initially, the learning rate
α, the exploration term ε and the parameter of the replacing traces λ were
set to 0.1, 0.2 and 0.95 respectively, and decreased gradually with a decay
factor 1/d 10

τ
e, where τ is the number of training episodes. We discretized

each dimension of the state space into 20 bins and used a tile coding to
represent the action-value function. We refer to [19] for more details.



method. Then, we plotted its mean and the 95% confidence
regions (assuming a multivariate normal distribution), which
represent the uncertainty coming from the repetitions of the
training process. As can be seen in Figure 1, our approach
is performing quite well and lies on the Pareto front of all
methods (which remains true when adding the death rate,
reported in the same figure, as a third criterion).

V. CONCLUSION AND FUTURE WORK

By introducing a preference-based extension of evolu-
tionary direct policy search, called PB-EDPS, this paper
contributes to the emerging field of preference-based re-
inforcement learning. Our method, which merely requires
qualitative comparisons between sample histories as train-
ing information (and even allows for incomparability), is
based on a theoretically sound decision-theoretic framework
and shows promising results in first experimental studies.
The idea of preference-based racing should not be limited
to reinforcement learning; instead, it seems worthwhile to
explore it for other applications, too, such as multi-objective
optimization with several competing objectives [20].
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