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Preference Learning Using the Choquet Integral:
The Case of Multipartite Ranking

Ali Fallah Tehrani, Weiwei Cheng, and Eyke Hüllermeier

Abstract—We propose a novel method for preference learning
or, more specifically, learning to rank, where the task is to learn
a ranking model that takes a subset of alternatives as input and
produces a ranking of these alternatives as output. Just like in the
case of conventional classifier learning, training information is pro-
vided in the form of a set of labeled instances, with labels or, say,
preference degrees taken from an ordered categorical scale. This
setting is known as multipartite ranking in the literature. Our ap-
proach is based on the idea of using the (discrete) Choquet integral
as an underlying model for representing ranking functions. Being
an established aggregation function in fields such as multiple crite-
ria decision making and information fusion, the Choquet integral
offers a number of interesting properties that make it attractive
from a machine learning perspective, too. The learning problem
itself comes down to properly specifying the fuzzy measure on
which the Choquet integral is defined. This problem is formalized
as a margin maximization problem and solved by means of a cut-
ting plane algorithm. The performance of our method is tested on
a number of benchmark datasets.

Index Terms—Attribute interactions, Choquet integral, classifi-
cation, monotonicity, preference learning.

I. INTRODUCTION

PREFERENCE learning is an emerging subfield of machine
learning that has received increasing attention in recent

years [1]. Roughly speaking, the goal in preference learning is
to induce preference models from observed data that reveals
information about the preferences of an individual or a group
of individuals in a direct or indirect way; these models are then
used to predict the preferences in a new situation. In this regard,
predictions in the form of rankings, i.e., total orders of a set
of alternatives, constitute an important special case [2]–[6]. A
ranking can be seen as a specific type of structured output [7],
and compared to conventional classification and regression func-
tions, models producing such outputs require a more complex
internal representation.

In this paper, we propose a novel method for such kind of
ranking problems, for the first time using the (discrete) Choquet
integral [8] as an underlying model for representing rankings
in a setting of supervised learning. The Choquet integral is an
established aggregation function that has been used in various
fields of application, including multiple criteria decision making
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and information fusion. It can be seen as a generalization of the
weighted arithmetic mean that is not only able to capture the
importance of individual features but also information about
the interaction (e.g., redundancy or complementarity) between
different features. Moreover, it obeys monotonicity properties
in a rather natural way. Due to these properties, the Choquet
integral appears to be very appealing for preference learning,
especially for aggregating the evaluation of individual features
in the form of interacting criteria. The learning problem itself
comes down to specifying the fuzzy measure underlying the
definition of the Choquet integral in the most suitable way. In
this regard, we explore connections to kernel-based machine
learning methods [9].

While a number of different types of ranking problems have
been introduced in the literature in recent years, we specifically
focus on a setting referred to as multipartite ranking [2], [6].
Roughly speaking, the task in multipartite ranking is to learn a
ranking model that takes any set of alternatives as input, with
each alternative typically represented in terms of a feature vec-
tor, and produces a ranking of these alternatives as output. Just
like in the case of conventional classifier learning, training in-
formation is provided in the form of a set of labeled instances,
with labels or, say, preference degrees taken from an ordered
categorical scale (such as bad, good, and very good).

The remainder of this paper is organized as follows. In the next
section, we give a brief overview of related work. In Section III,
we recall the basic definition of the (discrete) Choquet inte-
gral and related notions. The ranking problem we are deal-
ing with and our method for tackling this problem are intro-
duced in Sections IV and V, respectively. Experimental results
are presented in Section VI, prior to concluding this paper in
Section VII.

II. RELATED WORK

In this section, we briefly review related work on preference
learning and the use of the Choquet integral in machine learning.

A. Preference Learning

Methods for the automatic learning, discovery, and adapta-
tion of preferences have received increasing interest in machine
learning, data mining, and related research fields in recent years.
Approaches relevant to this area range from preference elicita-
tion where the utility function of a single agent is estimated by
asking questions effectively [10]–[12] to collaborative filtering
where a customer’s preferences are estimated from the pref-
erences of other customers [13], [14]. Preference learning can
be formalized within various settings, depending, e.g., on the
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underlying preference model and the type of information pro-
vided as an input to the learning system.

There are two main approaches to modeling preferences that
prevail in the literature on choice and decision theory: value
functions and preference relations. From a machine learning
point of view, these two approaches give rise to two kinds
of learning problems: learning value functions and learning
(binary) preference relations. The latter deviates more strongly
than the former from conventional problems such as classifi-
cation and regression, as it involves the prediction of complex
structures, such as rankings or partial order relations, rather
than single values. Moreover, training input in preference learn-
ing will not, as it is usually the case in supervised learning, be
offered in the form of complete examples but may comprise
more general types of information, such as relative preferences
or different kinds of indirect feedback and implicit preference
information [15], [16].

In general, a preference learning system is provided with a
set of items (e.g., products) for which preferences are known,
and the task is to learn a function that predicts preferences for a
new set of items (e.g., new products not seen so far), or for the
same set of items in a different context (e.g., the same products
but for a different user). Frequently, the predicted preference
relation is required to form a total order, in which case we also
speak of a ranking problem. In fact, among the problems in
the realm of preference learning, the task of “learning to rank”
has probably received the most attention in the literature so far,
and a number of different ranking problems have already been
introduced. Based on the type of training data and the required
predictions, Fürnkranz and Hüllermeier [1] distinguish between
the problems of object ranking [2], [17], label ranking [18]–[21],
and instance ranking [6], [22].

All of these basic learning tasks can be tackled by similar
techniques. As with the distinction between using value func-
tions and binary relations for modeling preferences, two general
approaches to preference learning have been proposed in the lit-
erature, the first one being based on the idea of learning to
evaluate individual alternatives by means of a value function,
while the second one seeks to compare (pairs of) competing
alternatives, that is, to learn one or more binary preference pred-
icates. Making sufficiently restrictive model assumptions about
the structure of a preference relation, one can also try to use the
data for identifying this structure. Finally, local estimation tech-
niques such as nearest neighbor prediction can be used, which
mostly lead to aggregating preferences in one way or another.

A value function assigns an abstract degree of utility to each
alternative under consideration. Depending on the underlying
utility scale, which is typically either numerical or ordinal, the
problem of learning a (latent) value function from the given
training data becomes one of regression learning or ordinal clas-
sification. Both problems are well known in machine learning.
However, value functions often implicate special requirements
and constraints that have to be taken into consideration such as,
for example, monotonicity in certain attributes. Besides, as men-
tioned earlier, training data are not necessarily given in the form
of input/output pairs, i.e., alternatives (instances) together with
their utility degrees, but may also consist of qualitative feedback

in the form of pairwise comparisons, stating that one alternative
is preferred to another one and therefore has a higher utility
degree. In general, this means that value functions need to be
learned from indirect instead of direct training information [15],
[16].

The learning of binary preference relations that compare al-
ternatives in a pairwise manner is normally simpler, mainly
because comparative training information (suggesting that one
alternative is better than another one) can be used directly instead
of translating it into constraints on a (latent) value function [4],
[23]. On the other hand, the prediction step may become more
difficult, since a binary preference relation learned from data is
not necessarily consistent in the sense of being transitive and,
therefore, does normally not define a ranking in a unique way.
What is needed, therefore, is a ranking procedure that maps a
preference relation to a maximally consistent ranking [24]. The
difficulty of this problem depends on the concrete consistency
criterion used, though many natural objectives (e.g., minimizing
the number of object pairs whose ranks are in conflict with their
pairwise preference) lead to NP-hard problems [2]. Fortunately,
efficient techniques such as simple voting (known as the Borda
count procedure in social choice theory) often deliver good ap-
proximations, sometimes even with provable guarantees [25],
[26].

Another approach to learning ranking functions is to proceed
from specific model assumptions, that is, assumptions about
the structure of the preference relations. This approach is less
generic than the previous ones, as it strongly depends on the
concrete assumptions made. An example is the assumption that
the target ranking of a set of objects described in terms of
multiple attributes can be represented as a lexicographic order
[27]–[29]. Another example is the assumption that the target
ranking can be represented by a CP-net [30]. From a machine
learning point of view, assumptions of the aforementioned type
can be seen as an inductive bias restricting the hypothesis space.
Provided the bias is correct, this is clearly an advantage, as it
may simplify the learning problem considerably.

Yet another alternative is to resort to the idea of local esti-
mation techniques as prominently represented, for example, by
the nearest neighbor estimation principle [31], [32]: Consider-
ing the rankings observed in similar situations as representative,
a ranking for the current situation is estimated on the basis of
these “neighbored” rankings, typically using an averaging-like
aggregation operator [18], [33]. This approach is in a sense or-
thogonal to the previous model-based one, as it is very flexible
and typically comes with no specific model assumption (ex-
cept the regularity assumption underlying the nearest neighbor
inference principle).

B. The Choquet Integral in Machine Learning

Although the Choquet integral has been widely applied as
an aggregation operator in multiple criteria decision making
[34]–[36] and as a tool for preference elicitation [37], [38], it
has been used much less in the field of machine learning so far.
There are, however, a few notable exceptions.
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Methods for binary classification based on the Choquet in-
tegral were developed in [39] and [40]. In [39], Grabisch and
Roubens essentially employ the Choquet integral as a fusion
operator in this context. For an instance x = (x1 , . . . , xn ), let
φ

(j )
i (x) express a measure of confidence (provided by feature

i) that x belongs to class j ∈ {0, 1}. They define the global
confidence for class j as an aggregation of these confidence
degrees:

φμ ( j ) (x) df= Cμ ( j )

(
φ

(j )
1 (x), . . . , φ(j )

n (x)
)
,

where Cμ denotes the discrete Choquet integral with respect
to the fuzzy measure μ. Eventually, the class with the highest
global confidence is predicted as an output. Here, the fuzzy
measures μ(0) and μ(1) express the importance of the features
and groups of features in the classification process. The φ

(j )
i are

assumed to be derived by means of a conventional parametric
or nonparametric probability density estimation method, subse-
quent to suitable normalization. The identification of the fusion
operator is then reduced to the identification (or learning) of the
fuzzy measures μ(0) and μ(1) with 2(2n − 2) coefficients. To
this end, Grabisch minimizes the empirical squared error loss

J =
∑

x∈T0

(
φμ ( 0 ) (x) − φμ ( 1 ) (x) − 1

)2

+
∑

x∈T1

(
φμ ( 1 ) (x) − φμ ( 0 ) (x) − 1

)2
, (1)

i.e., the sum of squared differences between predicted and given
output values, using standard optimization routines (T0 and T1
denote, respectively, the set of observed negative and positive
examples). Yan et al. [40] tackle a quite similar problem, albeit
using another optimization criterion (which can be seen as a
kind of relaxed class separability criterion). Besides, the authors
define the Choquet integral based on a so-called signed non-
additive measure [41].

Apart from binary classification, the Choquet integral was
also used in ordinal classification, a special type of multi-class
classification in which the class labels are linearly ordered (e.g.,
a paper submitted for publication can be labeled as accept, weak
accept, weak reject, or reject). Grabisch et al. [42], [43] con-
sider input data of the following kind: a reference set of objects
A = {1, . . . , l} and a set of criteria X = {1, . . . , n}; a table of
individual scores (performances) zki (k ∈ A, i ∈ X); a partial
preorder ≥A on A (partial ranking of the objects on a global ba-
sis); a partial preorder ≥X on X (partial ranking of the criteria);
a partial preorder ≥P on the set of pairs of criteria (partial rank-
ing of interaction); the sign of interaction between selected pairs
of criteria, reflecting synergy, independence, or redundancy. All
this information can be translated into linear equalities or in-
equalities between the weights of the underlying fuzzy measure
μ. This measure is then identified based on a constraint opti-
mization problem, using as objective function a criterion that
resembles very much the so-called margin principle in machine
learning. The method itself, however, is more oriented toward
decision making and less suitable for machine learning appli-
cations. In particular, it is not tolerant toward noise in the data

and, in terms of complexity, does not scale well with the size of
the data.

In [44], Beliakov and James develop a method for classifying
journals in the field of pure mathematics, which are rated on an
ordinal scale with categories A+ , A, B, and C. The classification
is done on the basis of five criteria serving as input attributes,
namely the number of citations per year, the impact factor, the
immediacy index, the total number of articles published, and
the cited half-life index (we shall use the same dataset in our
experiments later on). As a loss function, the authors use the
absolute difference between the predicted class and the target
(i.e., the loss is |i − j| if the ith class is predicted although the
jth class would be correct).

Although our focus in this paper is on the use of the Choquet
integral in supervised learning, it is worth mentioning that it
can also be used in other settings. In the recent paper [45] by
Beliakov et al., the discrete Choquet integral is used for metric
learning in semisupervised clustering. The authors investigate
necessary and sufficient conditions for the discrete Choquet inte-
gral to define a metric, and, as a special case, obtain analogous
conditions for ordered weighted averaging (OWA) operators.
The corresponding metric learning problem is formulated as a
linear programming problem.

III. THE DISCRETE CHOQUET INTEGRAL

In this section, we give a brief introduction to the (discrete)
Choquet integral, starting with a reminder of non-additive mea-
sures. In contrast to other fields, such as decision making and
aggregation operators, the Choquet integral is not widely known
in machine learning so far, which is the main reason to recall
its definition in some detail. Readers familiar with the Choquet
integral and related notions can safely skip this section.

A. Non-additive Measures

Let X = {x1 , . . . , xn} be a finite set and μ a measure 2X →
[0, 1]. For each A ⊆ X , we interpret μ(A) as the weight or, say,
the importance of the set of elements A. As an illustration, one
may think of X as a set of criteria (binary features) relevant for a
job, such as “speaking French” and “programming Java,” and of
μ(A) as the evaluation of a candidate satisfying criteria A (and
not satisfying X \ A). The term “criterion” is indeed often used
in the decision-making literature, where it suggests a monotone
“the higher the better” influence.

A standard assumption on a measure μ(·), which is, for exam-
ple, at the core of probability theory, is additivity: μ(A ∪ B) =
μ(A) + μ(B) for all A,B ⊆ X such that A ∩ B = ∅. Unfortu-
nately, additive measures cannot model any kind of interaction
between elements: extending a set of elements A ⊆ X by a set
of elements B ⊆ X \ A always increases the weight μ(A) by
the weight μ(B), regardless of A and B.

Suppose, for example, that the elements of two sets A
and B are complementary in a certain sense. For instance,
A = {French, Spanish} and B = {Java} could be seen as
complementary, since both language skills and programming
skills are important for the job. Formally, this can be expressed
in terms of a positive interaction: μ(A ∪ B) > μ(A) + μ(B).
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In the extreme case, when language skills and programming
skills are indeed essential, μ(A ∪ B) can be high although
μ(A) = μ(B) = 0 (suggesting that a candidate lacking either
language or programming skills is completely unacceptable).
Likewise, elements can interact in a negative way: if two sets
A and B are partly redundant or competitive, then μ(A ∪ B) <
μ(A) + μ(B). For example, B = {Java} and C = {C, C#}
might be seen as redundant, since knowledge of one program-
ming language does in principle suffice.

The above considerations motivate the use of non-additive
measures, also called capacities or fuzzy measures, which are
simply normalized and monotone:

μ(∅) = 0, μ(X) = 1, and

μ(A) ≤ μ(B) for all A ⊆ B ⊆ X. (2)

A useful representation of non-additive measures, which we
shall explore later on for learning Choquet integrals, is in terms
of the Möbius transform:

μ(B) =
∑

A⊆B

m(A) (3)

for all B ⊆ X , where the Möbius transform mμ of the measure
μ is defined as follows:

mμ(A) =
∑

B⊆A

(−1)|A |−|B |μ(B). (4)

The value mμ(A) can be interpreted as the weight that is exclu-
sively allocated to A, instead of being indirectly connected with
A through the interaction with other subsets.

A measure μ is said to be k-order additive, or simply
k-additive, if k is the smallest integer such that m(A) = 0
for all A ⊆ X with |A| > k. This property is interesting for
several reasons. First, as can be seen from (3), it means that
a measure μ can formally be specified by significantly fewer
than 2n values, which are needed in the general case. Second,
k-additivity is also interesting from a semantic point of view: as
will become clear in the following, this property simply means
that there are no interaction effects between subsets A,B ⊆ X
whose cardinality exceeds k.

B. Importance of Criteria and Interaction

An additive (i.e., k-additive with k = 1) measure μ can be
written as follows,

μ(A) =
∑

xi ∈A

μ({xi}) =
∑

xi ∈A

wi

with wi = μ({xi}) the weight of xi . Due to (2), these weights
are nonnegative and such that

∑n
i=1 wi = 1. In this case, there

is obviously no interaction between the criteria xi , i.e., the in-
fluence of xi on the value of μ is independent of the presence
or absence of any other xj . Besides, the weight wi is a natural
quantification of the importance of xi .

Measuring the importance of a criterion xi becomes obvi-
ously more involved when μ is non-additive. Besides, one may
then also be interested in a measure of interaction between the

criteria, either pairwise or even of a higher order. In the liter-
ature, measures of that kind have been proposed, both for the
importance of single as well as the interaction between several
criteria.

Given a fuzzy measure μ on X , the Shapley value (or impor-
tance index) of xi is defined as a kind of average increase in
importance due to adding xi to another subset A ⊂ X:

ϕ(xi) =
∑

A⊆X \{xi }

1

n

(
n − 1
|A|

) (μ(A ∪ {xi}) − μ(A)). (5)

The Shapley value of μ is the vector ϕ(μ) =
(ϕ(x1), . . . , ϕ(xn )). One can show that 0 ≤ ϕ(xi) ≤ 1
and

∑n
i=1 ϕ(xi) = 1. Thus, ϕ(xi) is a measure of the relative

importance of xi . Obviously, ϕ(xi) = μ({xi}) if μ is additive.
The interaction index between criteria xi and xj , as proposed

by Murofushi and Soneda [46], is defined as follows:

I(xi, xj ) =
∑

A⊆X \{xi ,xj }
ϑA · (μ(A ∪ {xi, xj}) − μ(A ∪ {xi})

−μ(A ∪ {xj}) + μ(A)),

with

ϑA =
1

(n − 1)
(

n − 2
| A |

) .

This index ranges between −1 and 1 and indicates a positive
(negative) interaction between criteria xi and xj if Ii,j > 0
(Ii,j < 0). The interaction index can also be expressed in terms
of the Möbius transform:

I(xi, xj ) =
∑

K⊆X \{xi ,xj },|K |=k

1
k + 1

m

(
{xi, xj} ∪ K

)
.

Furthermore, as proposed by Grabisch [47], the definition of
interaction can be extended to more than two criteria, i.e., to
subsets T ⊆ X:

I(T ) =
n−|T |∑

k=0

1
k + 1

∑

K⊆X \T ,|K |=k

m

(
T ∪ K

)
.

C. The Choquet Integral

So far, the criteria xi were simply considered as binary fea-
tures, which are either present or absent. Mathematically, μ(A)
can thus also be seen as an integral of the indicator function of
A, namely the function fA given by fA (x) = 1 if x ∈ A and = 0
otherwise. Now, suppose that f : X → R+ is any nonnegative
function that assigns a value to each criterion xi ; for example,
f(xi) might be the degree to which a candidate satisfies crite-
rion xi . An important question, then, is how to aggregate the
evaluations of individual criteria, i.e., the values f(xi), into an
overall evaluation, in which the criteria are properly weighted
according to the measure μ. Mathematically, this overall evalu-
ation can be considered as an integral Cμ(f) of the function f
with respect to the measure μ.
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Indeed, if μ is an additive measure, the standard integral just
corresponds to the weighted mean

Cμ(f) =
n∑

i=1

wi · f(xi) =
n∑

i=1

μ({xi}) · f(xi), (6)

which is a natural aggregation operator in this case. A nontrivial
question, however, is how to generalize (6) in the case where μ
is non-additive.

This question, namely how to define the integral of a function
with respect to a non-additive measure (not necessarily restricted
to the discrete case), is answered in a satisfactory way by the
Choquet integral, which has first been proposed for additive
measures by Vitali [48] and later on for non-additive measures
by Choquet [8]. The point of departure of the Choquet integral
is an alternative representation of the “area” under the function
f , which, in the additive case, is a natural interpretation of the
integral. Roughly speaking, this representation decomposes the
area into a “horizontal” instead of a “vertical” manner, thereby
making it amenable to a straightforward extension to the non-
additive case. More specifically, note that the weighted mean
can be expressed as follows:

n∑

i=1

f(xi) · μ({xi})

=
n∑

i=1

(
f(x(i))−f(x(i−1))

)
·
(

μ({x(i)})+ · · · +μ({x(n)})
)

=
n∑

i=1

(
f(x(i)) − f(x(i−1))

)
· μ

(
A(i)

)
,

where (·) is a permutation of {1, . . . , n} such that 0 ≤ f(x(1)) ≤
f(x(2)) ≤ · · · ≤ f(x(n)) (and f(x(0)) = 0 by definition), and
A(i) = {x(i) , . . . , x(n)}.

Now, the key difference between the left- and right-hand
sides of the above expression is that, whereas the measure μ is
only evaluated on single elements xi on the left, it is evaluated
on subsets of elements on the right. Thus, the right-hand side
suggests an immediate extension to the case of non-additive
measures, namely the Choquet integral, which, in the discrete
case, is formally defined as follows:

Cμ(f) =
n∑

i=1

(f(x(i)) − f(x(i−1))) · μ(A(i)).

In terms of the Möbius transform of μ, the Choquet integral can
also be expressed as follows:

Cμ(f) =
n∑

i=1

(f(x(i)) − f(x(i−1))) · μ(A(i))

=
n∑

i=1

f(x(i)) · (μ(A(i)) − μ(A(i+1)))

=
n∑

i=1

f(x(i))
∑

R⊆T( i )

m(R)

=
∑

T ⊆X

m(T ) × min
xi ∈T

f(xi) (7)

where T(i) = {S ∪ {x(i)} |S ⊂ {x(i+1) , . . . , x(n)}}. Note
that expression (7) can also be written in terms of an inner
product

〈mϕ , ϕ(f(x))〉,

with the mapping ϕ : R
n → R

2n −1 defined as follows:

ϕ(x) = ϕ(x1 , . . . , xn )

=
(

x1 , . . . , xn ,min{x1 , x2}, . . . ,min{xn−1 , xn},

min{x1 , x2 , x3}, . . . ,min{x1 , . . . , xn}
)

.

Moreover, mϕ denotes the vector (m1 , . . . ,mn ,mn+1 , . . . ,
m2n −1) of values of the Möbius transform in the order deter-
mined by ϕ(x).

IV. MULTIPARTITE RANKING

As mentioned earlier, different types of ranking problems
have recently been studied in the machine learning literature.
Here, we are specifically interested in the so-called multipartitle
ranking problem [6].

In most ranking problems, the goal is to learn a ranking
function that accepts a subset O ⊂ O of objects as input, where
O is a reference set of objects (e.g., the set of all books or
movies). As output, the function produces a ranking (total order)
 of the objects O. Typically, a ranking function of that kind
is implemented by means of a scoring function U : O → R so
that

o  o′ ⇔ U(o) ≥ U(o′)

for all o,o′ ∈ O. Obviously, U(o) can be considered as a kind
of utility degree assigned to the object o ∈ O. Seen from this
point of view, the goal in multipartite ranking is to learn a latent
utility function on a reference set O. In the following, we shall
also refer to U(·) itself as a ranking function. Moreover, we
assume that this function produces a strict order relation �, i.e.,
ties U(o) = U(o′) do not occur or are broken at random.

In order to induce a ranking function U(·), a learning al-
gorithm (or “learner” for short) is provided with training in-
formation. In the case of multipartite ranking, the “ground
truth” is supposed to be an ordinal categorization of objects.
That is, each object o ∈ O belongs to one of the classes in
L = {λ1 , λ2 , . . . , λk}, where the classes are sorted such that
λ1 < λ2 < · · · < λk . Correspondingly, training data consist of
a set of labeled objects (oi , �i) ∈ O × L, just like in ordinal
regression.

The goal is to learn a ranking function U(·) that agrees well
with the sorting of the classes in the sense that objects from
higher classes are ranked higher than objects from lower classes.
In [6], it was proposed to use the so-called C-index as a perfor-
mance measure reflecting this goal in an adequate way:

C(U,O) =

∑
1≤i<j≤k

∑
(o,o′)∈O i ×O j

S(U(o), U(o′))
∑

i<j |Oi | · |Oj |
,
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where Oi is the subset of objects o ∈ O whose true class is λi ,
and

S(u, v) =
{

1, u < v

0, otherwise
(8)

indicates whether or not a pair of objects has been ranked cor-
rectly. Thus, the C-index compares those object pairs (o,o′) ∈
O × O where the class of o is lower than the class of o′, and
checks whether U(o) < U(o′), i.e., whether U correctly assigns
a higher utility degree to o′ than to o. C(U,O) is then simply
given by the fraction of correct pairwise comparisons of this
kind. In the case of two classes, C-index reduces to AUC (area
under the ROC curve) that is widely used in binary classification.

V. LEARNING TO RANK USING THE CHOQUET INTEGRAL

The idea of our approach is to represent the latent utility
function U(·) in terms of a Choquet integral. Assuming that
objects o ∈ O are represented as feature vectors

fo = (fo(x1), . . . , fo(xn )),

where fo(xi) can be thought of as the evaluation of object o on
the criterion xi , this means that

U(o) = Cμ(fo). (9)

This approach appears to be interesting for a number of reasons,
notably the following:

1) The representation (9) covers the commonly used linear
utility functions as a special case.

2) Generalizing beyond the linear case, it is also able to cap-
ture more complex, nonlinear dependences and interac-
tions between criteria.

3) The Choquet integral offers various means for explaining
and understanding a utility function, including the impor-
tance value and the interaction index.

4) As opposed to many other models used in machine learn-
ing, the Choquet integral guarantees monotonicity in all
criteria [49]. This is a reasonable property of a utility
function which is often required in practice.

We assume training data to be available in the form of a set of
objects oi or, more specifically, the feature representation foi

of
these objects, together with corresponding label information �i ,
i = 1, . . . , N . From these data, a set D of pairwise preferences
is constructed: (oi ,oj ) ∈ D, suggesting that oi � oj , if the
training data contain (oi , �i) and (oj , �j ) with �i > �j .

Following the idea of empirical risk minimization [9], we
seek to induce a Choquet integral that minimizes the number of
ranking errors (8) on the training data D. Since the Choquet in-
tegral is uniquely identified by the underlying measure μ on the
set of criteria X = {x1 , . . . , xn}, this comes down to defining
this measure in a most suitable way. In this regard, we make use
of the representation (7) of μ in terms of its Möbius transform.
Inspired by the maximum margin principle in kernel-based ma-
chine learning [9], we formulate the problem of learning μ as

an optimization problem:

max
M,ξ1 ,...,ξN

⎧
⎨

⎩
M − γ

|D|
∑

(os ,ot )∈D

ξs + ξt

⎫
⎬

⎭
(10)

such that

Cμ(fos
) − Cμ(fot

) > M − ξs − ξt ∀(os ,ot) ∈ D (11)

ξs ≥ 0 s ∈ {1, . . . , N} (12)
∑

T ⊆X

m(T ) = 1 (13)

∑

B⊆A

m(B) ≥ 0 ∀A ⊆ X (14)

∑

L⊆A

m(L) ≤
∑

K⊆B

m(K) ∀A ⊂ B ⊆ X (15)

In this problem, M denotes the margin to be maximized, that
is, the smallest difference between the utility degrees of two
training objects os and ot with os � ot . More specifically, M
is a soft margin: accounting for the fact that it will generally be
impossible to satisfy all inequalities simultaneously, each object
os is associated with a slack variable ξs . The slack variables are
nonnegative, and a positive slack is penalized in proportion
to its size. Finally, γ is a tradeoff parameter that controls the
flexibility of the model; the higher the γ the stronger the slacks
are punished.

A. Dealing With Constraints on the Fuzzy Measure

The constraints (13)–(15) formalize, respectively, the normal-
ization, nonnegativity, and monotonicity of the Möbius trans-
form. Obviously, the nonnegativity and monotonicity conditions
are quite costly and produce as many as 3n − 2n constraints,
since each subset of X is compared with all its subsets:

n∑

i=1

(
n
i

)
(2i − 1) =

n∑

i=1

(
n
i

)
2i −

n∑

i=1

(
n
i

)
= 3n − 2n .

Fortunately, the last two constraints can be represented in a more
compact way, exploiting a transitivity property:

∑

B⊆A\{xi }
m(B ∪ {xi}) ≥ 0 ∀A ⊆ X,xi ∈ X.

This representation reduces the number of constraints to n2n−1 ,
which, despite still being large, is a significant reduction in
comparison to the original formulation.

Another way of reducing complexity is to restrict the class of
fuzzy measures to k-additive measures, that is, setting m(A) =
0 for all A ⊆ X with |A| > k. In fact, choosing k � n is not
only interesting from an optimization but also from a learning
point of view: since the degree of additivity of μ offers a way
to control the capacity of the underlying model class, selecting
a proper k is crucial in order to guarantee the generalization
performance of the learning algorithm. More specifically, the
larger k is chosen, the more flexibly the Choquet integral can be
fitted to the data. Thus, choosing k too large comes along with
a danger of overfitting the data.
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B. Dealing With Soft Margin Constraints

The number of soft margin constraints (11) and (12) may be-
come quite large, too, as it scales quadratically with the size N of
the training data. To cope with the complexity implied by these
constraints, we refer to the idea underlying cutting plane al-
gorithms, which originates from linear optimization theory and
has already been used successfully in learning support vector
machines for classification [50].

The key idea of cutting plane algorithms is to solve the prob-
lem by considering only a subset of all constraints, hoping that
the rest will be satisfied, too. If this is not the case, then more
constraints are added. More concretely, most algorithms start
with an empty set of constraints and successively add the con-
straint that is maximally violated by the current solution.

The pseudocode of the cutting plane approach is shown in
Algorithm 1. For each pair of objects (oi ,oj ) ∈ D with
oi � oj , we denote by fij the difference foi

− foj
, to which

we assign the class label +1; conversely, fji = foj
− foi

is
assigned the class label −1. The function ψ is defined as
ψ(x, y) = φ(x)y, where y ∈ {−1,+1}. Moreover, Δ is a loss
function defined as

Δ(y, y) =
{

0, y = y

L, otherwise,
(16)

where L is a rescaling parameter that can be set to 1 with-
out loss of generality. Roughly speaking, the lower the L, the
stronger the slack ξ penalized; the importance of the slack in
the objective function is controlled by the parameter ζ. Finally,
S∗

l = {(z1 , . . . , zn ) ∈ {0, 1}n |
∑n

i=1 zi = l }, where n is the
number of features and l ∈ {1, . . . , n}.

As can be seen, the algorithm iteratively constructs a working
set W = W1 ∪ · · · ∪Wr of constraints, starting with an empty
set W = ∅. In each step, the algorithm finds the constraint that
is mostly violated by the current solution w, ξ and adds it to
the working set. Additionally, it guarantees the monotonicity
constraints; the formulation in line 6 is provably equivalent to

the inequality constraints (15). The algorithm terminates as soon
as no further constraints are violated by more than the predefined
precision ε.

VI. EXPERIMENTAL RESULTS

A. Data

Preference learning data meeting the requirements of our set-
ting are by far not as abundant as data for standard machine
learning problems such as classification and regression. In par-
ticular, note that we require data in which the output is measured
on an ordered categorical scale. Moreover, since the Choquet
integral is a monotone aggregation operator, the data should
be monotone in the sense that the output can be expected to
increase with each input attribute.

In total, we managed to collect 15 datasets meeting these re-
quirements, mainly from the UCI repository1 and the WEKA
machine learning framework [52]. These are all benchmark
datasets commonly used for experimental purposes in machine
learning. Besides, we collected a number of real-world datasets
from other sources, namely data from an industrial polyester
dyeing process [53] and data about the evaluation of mathemat-
ical journals [44]. Table I provides a summary of all datasets,
which can be downloaded from our website.2 In what follows,
we give a brief description of these datasets.

� Color: The first dataset is color yield. It originates from
an industrial polyester dyeing process that was also ana-
lyzed in [51]. Here, the output variable is the color yield,
which has been measured as a function of three important
factors of the production process: disperse dyes concen-
tration, temperature, and time of dyeing. Corresponding
experiments have been made for seven different colors,
giving rise to seven datasets. Since the output variable is
actually numeric, we turn it into an ordinal class variable

1http://archive.ics.uci.edu/ml/
2http://www.uni-marburg.de/fb12/kebi/research/
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TABLE I
DATASETS AND THEIR PROPERTIES

with three values; to this end, two thresholds are defined in
such a way that the class distribution is uniform.

� Scientific Journals: This dataset is comprised of journals
in the field of pure mathematics, which are rated on a scale
with categories A+ , A, B, and C [44]. Each journal is,
moreover, scored in terms of five criteria serving as input
attributes, namely, cites (the total number of citations per
year), the impact factor (average number of citations per
article within two years after publication), the immediacy
index (cites to articles in current calendar year divided
by the number of articles published in that year), articles
(the total number of articles published), and cited half-life
(median age of articles cited).

� CPU: This is a standard benchmark dataset from the UCI
repository. It contains nine attributes, three of which were
removed since they are obviously of no predictive value
(vendor name, model name, ERP).

� Auto MPG: This dataset contains eight attributes and one
output. The attributes are cylinders, displacement, horse-
power, weight, acceleration, model year, origin, and car
name. The last attribute (car name) was removed because
it has no predictive value. The output is fuel consumption
in miles per gallon (MPG). In order to obtain an ordinal
class structure, the MPG value was discretized into six
consecutive intervals.

� Employee Selection: This dataset contains profiles of ap-
plicants for certain industrial jobs. The values of the four
input attributes were determined by psychologists based
upon psychometric test results and interviews with the can-
didates. The output is an overall score on an ordinal scale
between 1 and 9, corresponding to the degree of suitability
for each candidate to this type of job.

� Mammographic: This dataset is about breast cancer screen-
ing by mammography. The goal is to predict the severity
(benign or malignant) of a mammographic mass lesion
from BI-RADS attributes (mass shape, mass margin, and
density) and the patient’s age.

� Lecturers’ Evaluation: This dataset contains examples of
anonymous lecturer evaluations, taken at the end of MBA
courses. Students were asked to score their lecturers ac-
cording to four attributes such as oral skills and contribution
to their professional/general knowledge. The output was a
total evaluation of each lecturer’s performance, measured
on an ordinal scale from 0 to 4.

� Concrete Compressive Strength: This dataset comprises
eight quantitative input variables, namely the following fea-
tures of concrete: cement, blast furnace slag, fly ash, water,
superplasticizer, coarse aggregate, fine aggregate, and age.
The output set is the concrete compressive strength mea-
sured in megapascal. We turned it into an ordinal attribute
using equiwidth binning with six bins.

� Car Evaluation: This dataset contains six attributes describ-
ing a car: buying price, price of the maintenance, number
of doors, capacity in terms of persons to carry, the size of
luggage boot, and estimated safety of the car. The output is
the overall evaluation of the car: unacceptable, acceptable,
good, and very good.

B. Comparison With Linear and Polynomial Kernel Methods

We compared our approach (subsequently referred to as CI)
with kernel-based methods for ranking, using the spider imple-
mentation3 of the RankSVM approach with a linear and a poly-
nomial kernel [54]. A comparison with this class of methods
is interesting for several reasons. First, kernel-based methods
belong to the state of the art in the field of learning to rank.
Second, they make use of the same type of learning algorithm
(large margin maximization). Third, the use of a polynomial
kernel leads to a model that bears some resemblance with a
Choquet integral. In fact, using a polynomial kernel of degree d
on the original feature representation of objects, i.e., a kernel of
the form

K(o,o′) = (〈fo, fo′ 〉 + λ)d , (17)

essentially comes down to fitting a linear model in an expanded
feature space, in which the original features f(x1), . . . , f(xn )
are complemented by all monomials of order ≤d. Thus, a poly-
nomial kernel of degree d captures the same level of interactions
between criteria as a Choquet integral on a k-additive fuzzy
measure, when k = d. Note, however, that it does not guarantee
monotonicity in the input attributes.

Moreover, we compared with the weighted mean (WM),
which does indeed assure monotonicity, but which is not able
to capture any interaction between variables. This model was
implemented as a special case of our method, namely the case
of the Choquet integral based on a 1-additive measure.

3http://people.kyb.tuebingen.mpg.de/spider/
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TABLE II
PERFORMANCE IN TERMS OF THE AVERAGE C-INDEX ± STANDARD DEVIATION

TABLE III
WIN STATISTICS (NUMBER OF DATASETS ON WHICH THE FIRST METHOD WAS

BETTER THAN THE SECOND ONE)

C. Experimental Setup

In order to assure commensurability [55], all features were
normalized to the range 0 and 1 before learning, thereby turn-
ing them into a criterion, i.e., a “the higher the better” attribute.
To this end, the transformation fo(xi) = (xi − mi)/(Mi − mi)
was used, where mi and Mi are, respectively, the lower and up-
per bounds for xi (estimated from the data); if the influence of xi

is actually negative, the mapping fo(xi) = (Mi − xi)/(Mi −
mi) is used instead.

We randomly split the data into two parts, one half
for training and one half for testing. In order to find the
tradeoff parameter γ, we conducted a fivefold cross vali-
dation on the training data, selecting an optimal γ from
{10−4 , 10−3 , 10−2 , 10−1 , 1, 10, 102 , 103}. The model induced
from the training data is then evaluated on the test data, measur-
ing performance in terms of the C-index. This procedure was
repeated 100 times, and the results were averaged.

D. Results

An overview of the results is given in Table II. Moreover,
Table III provides a summary in terms of win–loss statistics,
showing, for each pair of methods, on how many datasets the first
one is better than the second one. The overall picture conveyed
by the results is clearly in favor of our method. In fact, the
superiority of CI can also be corroborated statistically, noting
that 12 wins are enough to reject the null hypothesis of equal
performance according to a simple (two-tailed) sign test at the
5% significance level. Statistically, the results, thus, suggest that
CI is signifiantly better than the competitor methods.

Table IV shows results for our method when restricting the
Choquet integral to k-additive measures, for different values of

k. A restriction of this kind is interesting for several reasons.
First, since less parameters need to be estimated, it reduces com-
plexity and, therefore, increases the efficiency of our learning
algorithm. Second, as already explained earlier, a restriction to
k-additive measures is also interesting from a learning (induc-
tion) point of view, as it allows for controlling the capacity of
the underlying hypothesis space: the larger the value of k, the
richer the model space. In other words, k can be used to control
the flexibility (nonlinearity) of the model class. If k is too small,
the model is not able to fit the data sufficiently well. On the other
hand, if k is too large, there is a danger of overfitting the data,
which may lead to poor generalization. Ideally, k is chosen so as
to avoid both problems, namely under- and overfitting the data.
As can be seen in Table IV, the ideal value does indeed depend
on the dataset and is often smaller than the largest possible value
(namely k = #attributes). The question of how to determine an
optimal value of k in an efficient way (i.e., without simply trying
all alternatives) is an important topic of future work.

As one of the key features of our approach, we already men-
tioned the aspect of interpretability. In particular, the Choquet
integral (or, more specifically, the underlying fuzzy measure)
provides natural measures of the importance of individual and
the interaction between pairs (or even groups) of attributes.
As an illustration, Fig. 1 visualizes the (pairwise) interaction
between attributes for the car evaluation data, for which CI per-
forms significantly better than WM. Recall that, in this dataset,
the evaluation of a car (output attribute) depends on a number of
criteria, namely (a) buying price, (b) price of the maintenance,
(c) number of doors, (d) capacity in terms of persons to carry,
(e) size of luggage boot, and (f) safety of the car. These criteria
form a natural hierarchy: (a) and (b) form a subgroup PRICE,
whereas the other properties are of TECHNICAL nature and can
be further decomposed into COMFORT (c)–(e) and safety (f).
Interestingly, the interaction in our model nicely agrees with this
hierarchy: interaction within each subgroup tends to be smaller
(as can be seen from the darker colors) than the interaction
between criteria from different subgroups, suggesting a kind
of redundancy in the former and complementarity in the latter
case.

In addition, Fig. 2 visualizes the interaction between the three
attributes in the color yield datasets, namely for CLR-1 and
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TABLE IV
C-INDEX FOR RESTRICTION TO k-ADDITIVE MEASURES (BEST RESULT HIGHLIGHTED IN BOLD)

Fig. 1. Visualization of the interaction index for the car evaluation data (nu-
merical values are shown in terms of level of gray; values on the diagonal are
set to 0). Groups of related criteria are indicated by the black lines.

Fig. 2. Visualization of the interaction index for datasets CLR-1 (left) and
CLR-7 (right). The reduction of prediction error is about twice as much as for
CLR-7. For the ease of representation, the values on the diagonal are set to 0.

CLR-7. The interaction is not very strong in the case of CLR-1,
but more pronounced for CLR-7. This is in agreement with the
improvement achieved by CI in comparison with a simple linear
model (WM), which is relatively small in the former but much
higher in the latter case. In fact, it is plausible that a complex,
nonlinear model like CI is not needed unless the attributes are
strongly interacting. Or, stated differently, if there is (almost)
no interaction between the attributes, a simple linear model will
generally be enough.

VII. SUMMARY AND CONCLUSIONS

In this paper, we have advocated the use of the discrete Cho-
quet integral in the context of preference learning. More specif-
ically, we have used the Choquet integral for representing a
latent utility function in multipartite ranking, a specific type of
preference learning problem. This idea is motivated by several
appealing properties offered by the Choquet integral, making it
quite attractive from a preference learning point of view. This
includes its ability to capture dependences between criteria (at-
tributes) and to obey natural monotonicity conditions, as well as
its interpretability. In fact, in preference learning, one is often
not only interested in the prediction of preferences. Instead, it
may also be important to get an explanation of a prediction, i.e.,
a reason for why an alternative A is (presumably) preferred to
another alternative B. The measures of importance and inter-
action between attributes, which can directly be derived from
the fuzzy measure underlying the Choquet integral, provide ex-
tremely valuable information in this regard.

The proper specification of this measure, i.e., the adaptation of
the fuzzy measure to the data at hand, is the main challenge from
a machine learning point of view. We formalized this problem
as a (soft) margin maximization problem and solved it by means
of a cutting plane algorithm. Our algorithm was compared with
state-of-the-art ranking methods on a number of benchmark
datasets. The results of these experiments are very promising
and clearly in favor of our approach.

Needless to say, the method proposed in this paper can be re-
fined in several directions. Especially interesting in this regard
is the idea of restricting the model class to k-additive measures,
connected with the use of k as a kind of regularization parameter
(cf., Section VI). Moreover, going beyond the specific problem
of multipartite ranking, one may of course also think of apply-
ing the Choquet integral to other types of preference learning
problems. Indeed, being convinced of the high potential of this
idea, we consider this paper as a first step toward establish-
ing the Choquet integral as an important mathematical tool of
preference learning, and a precursor for research along similar
lines.
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