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Abstract. In this paper, we introduce a new instance-based approach to
the label ranking problem. This approach is based on a probability model
on rankings which is known as the Mallows model in statistics. Proba-
bilistic modeling provides the basis for a theoretically sound prediction
procedure in the form of maximum likelihood estimation. Moreover, it
allows for complementing predictions by diverse types of statistical infor-
mation, for example regarding the reliability of an estimation. Empirical
experiments show that our approach is competitive to start-of-the-art
methods for label ranking and performs quite well even in the case of
incomplete ranking information.

Key words: Instance-based learning, Label ranking, Classi�cation, Max-
imum likelihood estimation

1 Introduction

The topic of learning preferences has attracted increasing attention in the recent
machine learning literature [1]. Label ranking, a particular preference learning
scenario, studies the problem of learning a mapping from instances to rankings
over a �nite number of prede�ned labels. It can be considered as a natural
generalization of the conventional classi�cation problem, where only a single
label is requested instead of a ranking of all labels.

Various approaches for label ranking have been proposed in recent years.
Typically, these are extensions of learning algorithms used in binary classi�ca-
tion problems. Ranking by pairwise comparison (RPC) is a natural extension of
pairwise classi�cation, in which binary preference models are learned for each
pair of labels, and the predictions of these models are combined into a ranking
of all labels [1]. Two other approaches, constraint classi�cation (CC) and log-
linear models for label ranking (LL), seek to learn linear utility functions for
each individual label instead of preference predicates for pairs of labels [2, 3].

In this paper, we are interested in an alternative to model-based approaches,
namely the use of an instance-based approach. Instance-based or case-based
learning algorithms have been applied successfully in various �elds, such as ma-
chine learning and pattern recognition, for a long time [4]. These algorithms
simply store the training data, or at least a selection thereof, and defer the



processing of this data until an estimation for a new instance is requested, a
property distinguishing them from typical model-based approaches. Instance-
based approaches therefore have a number of potential advantages, especially in
the context of the label ranking problem.

As a particular advantage of delayed processing, these learning methods may
estimate the target function locally instead of inducing a global prediction model
for the entire input domain (instance space) X. Predictions are typically obtained
using only a small, locally restricted subset of the entire training data, namely
those examples that are close to the query x 2 X (hence Xmust be endowed with
a distance measure). These examples are then aggregated in a reasonable way. As
aggregating a �nite set of objects from an output space 
 is often much simpler
than representing a complete X! 
 mapping in an explicit way, instance-based
methods are especially appealing if 
 has a complex structure.

In label ranking, 
 corresponds to the set of all rankings of an underlying
label set L. To represent an 
-valued mapping, the aforementioned model-based
approaches encode this mapping in terms of conventional binary models, either
by a large set of such models in the original label space L (RPC), or by a
single binary model in an expanded, high-dimensional space (CC, LL). Since
for instance-based methods, there is no need to represent an X ! 
 mapping
explicitly, such methods can operate on the original target space 
 directly.

The paper is organized as follows: In Section 2, we introduce the problem
of label ranking in a more formal way. The core idea of our instance-based
approach to label ranking, namely maximum likelihood estimation based on a
special probability model for rankings, is discussed in Section 4. The model
itself is introduced beforehand in Section 3. Section 5 is devoted to experimental
results. The paper ends with concluding remarks in Section 6.

2 Label Ranking

Label ranking can be seen as an extension of the conventional setting of classi�ca-
tion. Roughly speaking, the former is obtained from the latter through replacing
single class labels by complete label rankings. So, instead of associating every
instance x from an instance space X with one among a �nite set of class labels
L = f�1 : : : �ng, we now associate x with a total order of the class labels, that
is, a complete, transitive, and asymmetric relation �x on L where �i �x �j
indicates that �i precedes �j in the ranking associated with x. It follows that a
ranking can be considered as a special type of preference relation, and therefore
we shall also say that �i �x �j indicates that �i is preferred to �j given the
instance x. To illustrate, suppose that instances are students (characterized by
attributes such as sex, age, and major subjects in secondary school) and � is a
preference relation on a �xed set of study �elds such as Math, CS, Physics.

Formally, a ranking �x can be identi�ed with a permutation �x of the set
f1 : : : ng. It is convenient to de�ne �x such that �x(i) = �x(�i) is the position
of �i in the ranking. This permutation encodes the (ground truth) ranking:
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where ��1
x

(j) is the index of the label at position j in the ranking. The class
of permutations of f1 : : : ng (the symmetric group of order n) is denoted by

. By abuse of terminology, though justi�ed in light of the above one-to-one
correspondence, we refer to elements � 2 
 as both permutations and rankings.

In analogy with the classi�cation setting, we do not assume that there exists
a deterministic X ! 
 mapping. Instead, every instance is associated with a
probability distribution over 
. This means that, for each x 2 X, there exists a
probability distribution Pr(� jx) such that, for every � 2 
,

Pr(� jx) (1)

is the probability that �x = �.
The goal in label ranking is to learn a \label ranker" in the form of an

X! 
 mapping. As training data, a label ranker uses a set of instances xk, k =
1 : : :m, together with information about the associated rankings �xk . Ideally,
complete rankings are given as training information. From a practical point of
view, however, it is also important to allow for incomplete information in the
form of a ranking
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where fi1; i2 : : : ikg is a subset of the index set f1 : : : ng such that 1 � i1 <
i2 < : : : < ik � n. For example, for an instance x, it might be known that
�2 �x �1 �x �5, while no preference information is given about the labels �3 or
�4.

To evaluate the predictive performance of a label ranker, a suitable loss func-
tion on 
 is needed. In the statistical literature, several distance measures for
rankings have been proposed. One commonly used measure is the number of
discordant pairs,

D(�; �) = f (i; j) j i < j; �(i) > �(j) and �(i) < �(j) g ; (2)

which is closely related to the Kendall's tau coe�cient. In fact, the latter is a
normalization of (2) to the interval [�1; 1] that can be interpreted as a correlation
measure (it assumes the value 1 if � = � and the value �1 if � is the reversal of
�). Kendall's tau is a natural, intuitive, and easily interpretable measure [5]. We
shall focus on (2) throughout the paper, even though other distance measures
could of course be used. A desirable property of any distanceD(�) is its invariance
toward a renumbering of the elements (renaming of labels). This property is
equivalent to the right invariance of D(�), namely D(��; ��) = D(�; �) for all
�; �; � 2 
, where �� = � �� denotes the permutation i 7! �(�(i)). The distance
(2) is right-invariant, and so are most other commonly used metrics on 
.

3 The Mallows Model

So far, we did not make any assumptions about the probability measure (1)
despite its existence. To become more concrete, we resort to a distance-based



probability model introduced by Mallows [5]. The standard Mallows model is a
two-parameter model that belongs to the exponential family:

Pr(� j �; �) =
exp(�D(�; �))

�(�; �)
; (3)

where the two parameters are the location parameter (modal ranking, center
ranking) � 2 
 and the spread parameter � � 0. For right-invariant metrics,
it can be shown that the normalization constant does not depend on � and,
therefore, can be written as a function �(�) of � alone. This is due to

�(�; �) =
X
�2


exp(�D(�; �)) =
X
�2


exp(�D(���1; e))

=
X
�02


exp(�D(�0; e)) = �(�) ;

where e = (1 : : : n) is the identity ranking. More speci�cally, it can be shown
that the normalization constant is given by [6]

�(�) =

nY
j=1

1� exp(j�)

1� exp(�)
; (4)

and that the expected distance from the center is

E [D(�; �) j �; �] =
n exp(�)

1� exp(�)
�

nX
j=1

j exp(j�)

1� exp(j�)
: (5)

Obviously, the Mallows model assigns the maximum probability to the cen-
ter ranking �. The larger the distance D(�; �), the smaller the probability of �
becomes. The spread parameter � determines how quickly the probability de-
creases, i.e., how peaked the distribution is around �. For � = 0, the uniform
distribution is obtained, while for � ! �1, the distribution converges to the
one-point distribution that assigns probability 1 to � and 0 to all other rankings.

4 Learning and Inference

Coming back to the label ranking problem and the idea of instance-based learn-
ing, consider a query instance x 2 X and let x1 : : :xk denote the nearest neigh-
bors of x (according to an underlying distance measure on X) in the training set,
where k 2 N is a �xed integer. Moreover, let �1 : : : �k 2 
 denote the rankings
associated, respectively, with x1 : : :xk.

In analogy to the conventional settings of classi�cation and regression, in
which the nearest neighbor estimation principle has been applied for a long
time, we assume that the probability distribution Pr(� jx) on 
 is (at least
approximately) locally constant around the query x. By furthermore assuming



independence of the observations, the probability to observe ��� = f�1 : : : �kg
given the parameters (�; �) becomes

Pr(��� j �; �) =

kY
i=1

Pr(�i j �; �) =

kY
i=1

exp (�D(�i; �))

�(�)

=
exp
�
�
Pk

i=1D(�i; �)
�

�Qn

j=1
1�exp(j�)
1�exp(�)

�k :

(6)

The maximum likelihood estimation (MLE) of (�; �) is then given by those pa-
rameters that maximize this probability. It is easily veri�ed that the MLE of �
is given by

�̂ = argmin
�

kX
i=1

D(�i; �); (7)

i.e., by the (generalized) median of the rankings �1 : : : �k. Moreover, the MLE of
� is derived from the average observed distance from �̂, which is an estimation
of the expected distance E [D(�; �)j�; �]:

1

k

kX
i=1

D(�i; �̂) =
n exp(�)

1� exp(�)
�

nX
j=1

j exp(j�)

1� exp(j�)
: (8)

Since the right-hand side of (8) is monotone increasing, a standard line search
quickly converges to the MLE [6].

Now, consider the more general case of incomplete preference information,
which means that a ranking �i does not necessarily contain all labels. The prob-
ability of �i is then given by

Pr(E(�i)) =
X

�2E(�i)

Pr(� j �; �) ;

where E(�i) denotes the set of all consistent extensions of �i: A permutation
� 2 
 is a consistent extension of � if it ranks all labels that also occur in �i in
the same order.

The probability of observing the neighbor rankings ��� = (�1 : : : �k) then be-
comes

Pr(��� j �; �) =

kY
i=1

Pr(E(�i) j �; �) =

kY
i=1

X
�2E(�i)

Pr(� j �; �)

=

Qk

i=1

P
�2E(�i)

exp (�D(�; �))
�Qn

j=1
1�exp(j�)
1�exp(�)

�k :

(9)

Computing the MLE of (�; �) by maximizing this probability now becomes more
di�cult. For label sets of small to moderate size, say up to 7, one can a�ord a



simple brute force approach, namely an exhaustive search over 
 to �nd the
center ranking �, combined with a numerical procedure to optimize the spread
�. For larger label sets, this procedure becomes too ine�cient. Here, we pro-
pose an approximation algorithm that can be seen as an instance of the EM
(Expectation-Maximization) family of algorithms.

The algorithm works as follows. Starting from an initial (complete) center
ranking �̂, each incomplete neighbor ranking �i is replaced by the most probable
consistent extension given �̂. Regardless of �, this extension is obviously given by
a ranking in argmin�2E(�i)D(�; �̂). It can be found by (minimally) re-ranking
the center �̂ so as to make it consistent with the incomplete ranking �i. Having
replaced all neighbor rankings by their most probable extensions, an MLE (�; �)
can be derived as described for the case of complete information above. The
center ranking �̂ is then replaced by �, and the whole procedure is iterated
until the center does not change any more. In the following, we discuss two sub-
problems of the algorithm in more detail, namely the solution of the median
problem (7), which needs to be solved to �nd an MLE �, and the choice of an
initial center ranking.

Solving the (generalized) median problem (7) is known to be NP-complete for
Kendall's tau, i.e., if the distance D is given by the number of rank inversions [7].
To solve this problem approximately, we make use of the fact that Kendall's tau
is well approximated by Spearman's rank correlation [8], and that the median
can be computed for this measure (i.e., for D given by the sum of squared rank
di�erences) by a procedure called Borda count [9]: Given a (complete) ranking
�i of n labels, the top-label receives n votes, the second-ranked n� 1 votes, and
so on. Given k rankings �1 : : : �k, the sum of the k votes are computed for each
label, and the labels are then ranked according to their total votes.

The choice of the initial center ranking in the above algorithm is of course
critical. To �nd a good initialization, we again resort to the idea of solving the
problem (7) approximately using the Borda count principle. At the beginning,
however, the neighbor rankings �k are still incomplete. To handle this situa-
tion, we make the simplifying assumption that the completions are uniformly
distributed in E(�i). Again, this is an approximation, since we actually proceed
from the Mallows and not from the uniform model. On the basis of this assump-
tion, we can show the following result (proof omitted due to space restrictions).

Theorem 1. Let a set of incomplete rankings �1 : : : �k be given, and suppose the

associated complete rankings S1 : : : Sk to be distributed, respectively, uniformly

in E(�1) : : : E(�k). The expected sum of distances D(�; S1)+ : : :+D(�; Sk), with
D the sum of squared rank distances, becomes minimal for the ranking � which is

obtained by a generalized Borda count, namely a Borda count with a generalized

distribution of votes from incomplete rankings: If �i is an incomplete ranking of

m � n labels, then the label on rank i 2 f1 : : :mg receives (m�i+1)(n+1)=(m+1)
votes, while each missing label receives a vote of (n+ 1)=2.



Table 1. Statistics for the semi-synthetic and real datasets

dataset #examples #classes #features

iris 150 3 4
wine 178 3 13
glass 214 6 9
vehicle 846 4 18
dtt 2465 4 24
cold 2465 4 24

5 Experimental Results

5.1 Methods

In this section, we compare our instance-based (nearest neighbor, NN) approach
with existing methods for label ranking, namely ranking by pairwise comparison
(RPC), constraint classi�cation (CC), and log-linear models for label ranking
(LL). Since space restrictions prevent from a detailed review, we refer to the
original literature and [1] for a short review of these methods. Regarding the
concrete implementation and parameterization of these methods, we also follow
[1].

To �t the Mallows model, we test the two previously discussed variants,
namely the exhaustive search which guarantees an optimal solution (NNE) and
the approximation algorithm outlined in Section 4 (NNH). The parameter k
(neighborhood size) was selected through cross validation on the training set.
As a distance measure on the instance space we used the Euclidean distance
(after normalizing the attributes).

5.2 Data

We used two real-world data sets, dtt and cold, from the bioinformatics �eld.
These data sets contain two types of genetic data, namely phylogenetic pro�les
and DNA microarray expression data for the Yeast genome.1 The genome con-
sists of 2465 genes, and each gene is represented by an associated phylogenetic
pro�le of length 24. Using these pro�les as input features, we investigated the
task of predicting a \qualitative" representation of an expression pro�le; see [1]
for a detailed description and motivation of this task.

In addition to the real-world data sets, the following multiclass datasets from
the UCI repository of machine learning databases and the Statlog collection were
included in the experimental evaluation: iris, wine, glass, vehicle. For each of
these datasets, a corresponding ranking dataset was generated in the following
manner: We trained a naive Bayes classi�er on the respective dataset. Then, for
each example, all the labels present in the dataset were ordered with respect
to decreasing predicted class probabilities (in the case of ties, labels with lower

1 This data is publicly available at http://www1.cs.columbia.edu/compbio/ .



Table 2. Experimental results in terms of Kendall's tau (mean and standard deviation)
for di�erent missing label rates (parameter p).

iris 0% 10% 20% 30% 40% 50% 60% 70%

RPC .885�.068 .888�.064 .886�.060 .871�.074 .854�.082 .837�.089 .779�.110 .674�.139
CC .836�.089 .825�.095 .815�.088 .807�.099 .788�.105 .766�.115 .743�.131 .708�.105
LL .818�.088 .811�.089 .805�.087 .806�.087 .800�.091 .788�.087 .778�.096 .739�.186
NNE .960�.036 .956�.041 .941�.044 .934�.049 .915�.056 .882�.085 .859�.082 .812�.107

NNH .966�.034 .948�.036 .917�.051 .863�.072 .822�.088 .802�.084 .767�.122 .733�.104
wine

RPC .921�.053 .900�.067 .886�.073 .902�.063 .910�.065 .882�.082 .864�.097 .822�.118
CC .933�.043 .918�.057 .929�.058 .911�.059 .922�.057 .885�.074 .853�.078 .802�.123
LL .942�.043 .944�.046 .939�.051 .944�.042 .933�.062 .918�.065 .906�.072 .864�.094

NNE .952�.048 .945�.051 .943�.055 .940�.054 .941�.050 .930�.058 .910�.061 .677�.173
NNH .953�.042 .949�.041 .949�.041 .933�.048 .899�.075 .709�.186 .591�.210 .587�.180
glass

RPC .882�.042 .875�.046 .867�.044 .851�.052 .840�.053 .813�.062 .799�.054 .754�.076
CC .846�.045 .848�.053 .838�.059 .835�.054 .833�.051 .807�.066 .789�.052 .747�.061
LL .817�.060 .815�.061 .813�.063 .819�.062 .819�.060 .809�.066 .806�.065 .807�.063

NNE .875�.063 .866�.059 .840�.059 .803�.062 .750�.071 .677�.066 .598�.082 .500�.078
NNH .865�.059 .847�.062 .810�.056 .754�.069 .691�.063 .633�.061 .550�.069 .484�.079
vehicle

RPC .854�.025 .848�.025 .847�.024 .834�.026 .823�.032 .803�.033 .786�.036 .752�.041
CC .855�.022 .848�.026 .849�.026 .839�.025 .834�.026 .827�.026 .810�.026 .791�.030

LL .770�.037 .769�.035 .769�.033 .766�.040 .770�.038 .764�.031 .757�.038 .756�.036
NNE .863�.030 .859�.031 .847�.029 .834�.031 .822�.030 .795�.033 .766�.034 .723�.036
NNH .862�.025 .852�.024 .845�.030 .828�.029 .798�.031 .776�.033 .748�.032 .701�.047
dtt

RPC .174�.034 .172�.034 .168�.036 .166�.036 .164�.034 .153�.035 .144�.028 .125�.030
CC .180�.037 .178�.034 .176�.033 .172�.032 .165�.033 .158�.033 .149�.031 .136�.033
LL .167�.034 .168�.033 .168�.034 .168�.034 .167�.033 .167�.036 .162�.032 .156�.034

NNE .182�.036 .179�.036 .173�.036 .169�.036 .162�.036 .161�.037 .154�.036 .136�.035
NNH .191�.034 .183�.037 .176�.036 .168�.038 .163�.034 .146�.036 .145�.033 .128�.035
cold

RPC .221�.028 .217�.028 .213�.030 .212�.030 .208�.030 .201�.030 .188�.030 .174�.031
CC .220�.029 .219�.030 .212�.030 .212�.028 .205�.024 .197�.030 .185�.031 .162�.035
LL .209�.028 .210�.031 .206�.030 .210�.030 .203�.031 .203�.031 .202�.032 .192�.031

NNE .230�.028 .226�.029 .220�.030 .213�.031 .199�.029 .195�.033 .190�.035 .188�.035
NNH .244�.026 .237�.028 .235�.031 .226�.024 .220�.029 .214�.029 .199�.030 .192�.032

index are ranked �rst). Thus, by substituting the single labels contained in the
original multiclass datasets with the complete rankings, we obtain the label
ranking datasets required for our experiments. A summary of the data sets and
their properties is given in Table 1.

5.3 Experiments and Results

Results were derived in terms of the Kendall's tau correlation coe�cient from
�ve repetitions of a ten-fold cross-validation. To model incomplete preferences,
we modi�ed the training data as follows: A biased coin was ipped for every
label in a ranking in order to decide whether to keep or delete that label; the
probability for a deletion is speci�ed by a parameter p.

The results are summarized in Table 2. As can be seen, NN is quite com-
petitive to the model-based approaches and often outperforms these methods.
In any case, it is always close to the best result. It is also remarkable that NN
seems to be quite robust toward missing preferences and compares comparably
well in this regard. This was not necessarily expected, since NN uses only local



information, in contrast to the other approaches that induce global models. Our
approximation algorithm NNH gives very good approximations of NNE through-
out and is especially appealing for large label sets: It dramatically reduces the
runtime (not shown due to space restrictions) without any signi�cant decrease
of the performance.

A nice feature of our approach, not shared by the model-based methods, is
that it comes with a natural measure of the reliability of a prediction. In fact,
the smaller the parameter �, the more peaked the distribution around the center
ranking and, therefore, the more reliable this ranking becomes as a prediction.
To test whether (the estimation of) � is indeed a good measure of uncertainty
of a prediction, we used it to compute a kind of accuracy-rejection curve: By
averaging over �ve 10-fold cross validations (with NNE), we computed an accu-
racy degree �x (the average Kendall's tau) and a reliability degree �x for each
instance x. The instances are then sorted in decreasing order of reliability. Our
curve plots a value p against the mean � -value of the �rst p percent of the in-
stances. Given that � is indeed a good indicator of reliability, this curve should
be decreasing, because the higher p, the more instances with a less strong �-value
are taken into consideration. As can be seen in Fig. 1, the curves obtained for
our data sets are indeed decreasing and thus provide evidence for our claim that
� may serve as a reasonable indicator of the reliability of a prediction.
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Fig. 1. Accuracy-rejection curves computed on the basis of the parameter �.



6 Conclusions and Future Work

In this paper, we have introduced an instance-based (nearest neighbor) approach
to the label ranking problem that has recently attracted attention in the �eld of
machine learning. Our basic inference principle is a consistent extension of the
nearest neighbor estimation principle, as used previously for well-known learn-
ing problems such as classi�cation and regression: Assuming that the conditional
(probability) distribution of the output given the query is locally constant, we
derive a maximum likelihood estimation based on the Mallows model, a spe-
cial type of probability model for rankings. Our �rst empirical results are quite
promising and suggest that this approach is fully competitive, in terms of pre-
dictive accuracy, to (model-based) state-of-the-art methods for label ranking.
Besides, it has some further advantages, as it does not only produce a single
ranking as an estimation but instead delivers a probability distribution over all
rankings. This distribution can be used, for example, to quantify the reliability
of the predicted ranking.

Currently, we are working on extensions and variants of the label ranking
problem, such as calibrated label ranking and multi-label classi�cation [10]. In
fact, we believe that the approach proposed in this paper can be extended to a
solid framework that not only allows for solving the label ranking problem itself
but also variants thereof.
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