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Abstract. The F-measure, originally introduced in information retrieval,
is nowadays routinely used as a performance metric for problems such as
binary classification, multi-label classification, and structured output pre-
diction. In this paper, we describe our methods applied in the JRS 2012
Data Mining Competition for topical classification, where the instance-
based F-measure is used as the evaluation metric. Optimizing such a mea-
sure is a statistically and computationally challenging problem, since no
closed-formmaximizer exists. However, it has been shown recently that the
F-measure maximizer can be efficiently computed if some properties of the
label distribution are known. For independent labels, it is enough to know
marginal probabilities. An algorithm based on dynamic programming is
then able to compute the F-measure maximizer in cubic time with respect
to the number of labels. For dependent labels, one needs a quadratic num-
ber (with respect to the number of labels) of parameters for the joint dis-
tribution to compute (also in cubic time) the F-measure maximizer. These
results suggest a two step procedure. First, an algorithm estimating the re-
quired parameters of the distribution has to be run. Then, the inference al-
gorithm computing the F-measure maximizer is used over these estimates.
Such a procedure achieved a very satisfactory result in the JRS 2012 Data
Mining Competition.

1 Introduction

While being rooted in information retrieval [1], the so-called F-measure is nowa-
days routinely used as a performance metric for different types of prediction prob-
lems, including binary classification, multi-label classification (MLC), and cer-
tain applications of structured output prediction, like text chunking and named
entity recognition. Compared to measures like the 0-1 loss in binary classification
and the Hamming loss in MLC, it enforces a better balance between performance
on the minority and the majority class, and it is hence more suitable in the case
of imbalanced data, which arises quite frequently in real-world applications.
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The predictive task in the JRS 2012 Data Mining Competition1 falls into such
a category. Generally speaking, this competition concerns the topical classifica-
tion of biomedical research papers based on the concept information from the
MeSH ontology,2 which are automatically assigned by the tagging system. More
precisely, as the training data, there are in total 10000 instances with 25640 fea-
tures and 83 classes. The values of the features are presented as integers ranging
from 0 to 1000, expressing association strengths to corresponding MeSH terms,
and the classes correspond to the topic identifiers. There are another 10000 in-
stances as the test data. They share the same format as the training data, except
that the class information is not given. Similar to other text classification prob-
lems, the data of the JRS competition are very sparse. Consider the training
data for example, the most dense feature has 2738 nonzero entries and the most
dense class is associated with 2475 instances. The sparseness of the data calls
for evaluation metrics like the F-measure. More precisely, the instance-based F-
measure is applied in the JRS competition, which we shall discuss later in more
details.

The paper is organized as follows. We first introduce the formal setting of
multi-label classification and the definition of the instance-based F-measure in
Section 2. Inference techniques for F-measure maximization are discussed in
Section 3, where we start with the case of independent class labels and then
discuss the more general case without the independence assumption. These in-
ference techniques are based on the parameters of the label distribution. We
discuss the estimation of such parameters in Section 4. Some empirical evalua-
tions of our approaches are shown in Section 5, prior to the final conclusion in
Section 6.

2 Multi-label Learning and Instance-Based F-Measure

The task of the JRS competition is a multi-label learning problem. Let X denote
an instance space, and let L = {λ1, λ2, . . . , λm} be a finite set of class labels.
An instance x ∈ X is (non-deterministically) associated with a subset of labels
L ∈ 2L; this subset is called the set of relevant labels, while the complement
L \L is considered as irrelevant for x. It is common to identify L with a binary
vector y = (y1, y2, . . . , ym), where yi = 1 means λi ∈ L. We denote the set of
possible labelings as Y = {0, 1}m.

Given a prediction h(x) = (h1(x), . . . , hm(x)) ∈ Y of an m-dimensional bi-
nary label vector y = (y1, . . . , ym), the label vector associated with a single
instance, the instance-based F-measure is defined as follows:

F (y,h(x)) =
2
∑m

i=1 yihi(x)∑m
i=1 yi +

∑m
i=1 hi(x)

∈ [0, 1] , (1)

1 http://tunedit.org/challenge/JRS12Contest
2 http://www.nlm.nih.gov/mesh/introduction.html

http://tunedit.org/challenge/JRS12Contest
http://www.nlm.nih.gov/mesh/introduction.html
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where 0/0 = 1 by definition. This measure essentially corresponds to the har-
monic mean of precision prec and recall rec:

prec(y,h(x)) =

∑m
i=1 yihi(x)∑m
i=1 hi(x)

, rec(y,h(x)) =

∑m
i=1 yihi(x)∑m

i=1 yi
. (2)

One can generalize the F-measure to a weighted harmonic average of these two
values, but for the sake of simplicity, we stick to the unweighted mean, which
is often referred to as the F1-score or the F1-measure. This variant of the F-
measure was also used in the competition.

Modeling the ground-truth as a random variable Y , i.e., assuming an un-
derlying probability distribution p(Y ) on {0, 1}m, the prediction h∗

F (x) that
maximizes the expected F-measure is given by

h∗
F (x) = argmax

h(x)∈{0,1}m

Ey∼p(Y ) [F (y,h(x))]

= argmax
h(x)∈{0,1}m

∑

y∈{0,1}m

p(Y=y)F (y,h(x)) .
(3)

Unfortunately, a closed form of the maximizer h∗
F (x) does not exist and a brute-

force search is infeasible, as it would require checking all 2m combinations of pre-
diction vector h and computing a sum over an exponential number of terms for
each h. However, several algorithms have been introduced recently that compute
the F-measure maximizer efficiently.

3 Algorithms for F-Measure Maximization

The problem (3) can be solved via outer and inner maximization [2]. Namely,
(3) can be transformed into an inner maximization

h(k)∗ = argmax
h∈Hk

Ey∼p(Y ) [F (y,h)] , (4)

where Hk = {h ∈ {0, 1}m | ∑m
i=1 hi = k}, followed by an outer maximization

h∗
F = argmax

h∈{h(0)∗ ,...,h(m)∗}
Ey∼p(Y ) [F (y,h)] . (5)

The outer maximization (5) can be done by simply checking allm+1 possibilities.
The main effort is then required for solving the inner maximization (4).

3.1 Label Independence

By assuming independence of the random variables Y1, . . . , Ym, the optimization
problem (3) can be substantially simplified. It has been shown independently in
[3] and [2] that the optimal solution always contains the labels with the highest
marginal probabilities pi = P (Yi = 1), or no labels at all. As a consequence,
only a few (m+ 1 instead of 2m) hypotheses h need to be examined.
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Furthermore, Lewis [3] has shown that the expected F-measure can be ap-
proximated by the following expression under the assumption of independence:3

Ey∼p(Y ) [F (y,h)] �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m∏

i=1

(1− pi) if h = 0 ,

2
∑m

i=1 pihi∑m
i=1 pi +

∑m
i=1 hi

if h �= 0 .

(6)

This approximation is exact for h = 0, and is tractable with O(m). For h �= 0,
an upper bound of the error can easily be determined [3]. However, the exact
solution can be computed efficiently, as will be explained in more details below.

Jansche [2] and Chai [4] have independently proposed exact procedures for
solving the inner maximization (4). The former runs in O(m3), while the lat-
ter runs in O(m2), leading to the overall complexity of O(m4) and O(m3), re-
spectively. Since both algorithms deliver the same estimate, we focus on Chai’s
approach here. We refer to it as DP, since it is based on dynamic programming.

Chai [4] has shown that the expected F-measure of h(k)∗ , the solution of the
inner maximization (4) for a given k that assigns ones to k labels with the largest
marginal probabilities, can be expressed as follows:

Ey∼p(Y )

[
F (y,h(k))

]
= 2

m∏

i=1

(1− pi)I1(m) ,

where I1(m) is given by the following recurrent equations and boundary condi-
tions:

It(a) = It+1(a) + rtIt+1(a+ 1) + rtJt+1(a+ 1)

Jt(a) = Jt+1(a) + rtJt+1(a+ 1)

Ik+1(a) = 0 Jm+1(a) = a−1

with ri = pi/(1−pi). These equations suggest a dynamic programming algorithm
of spaceO(m) and time O(m2) for solving the inner maximization (4) for given k.

3.2 A General Procedure

If the independence assumption is violated, the above methods may produce
predictions far away from the optimal one, as shown in [5] by Dembczynski et
al. In this paper, the authors have further introduced an exact and efficient
algorithm for computing the F-measure maximizer without using any additional
assumption on the probability distribution p(Y ). The algorithm, called general
F-measure maximizer (GFM), needs m2 + 1 parameters and runs in O(m3).

The inner optimization problem (4) can be formulated as follows:

h(k)∗ = argmax
h∈Hk

Ey∼p(Y ) [F (y,h)] = argmax
h∈Hk

∑

y∈{0,1}m

p(y)
2
∑m

i=1 yihi

sy + k
,

3 We henceforth denote 0 and 1 as vectors containing all zeros and ones, respectively.
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with sy =
∑m

i=1 yi. The sums can be swapped, resulting in

h(k)∗ = argmax
h∈Hk

2

m∑

i=1

hi

∑

y∈{0,1}m

p(y)yi
sy + k

. (7)

Furthermore, one can sum up the probabilities p(y) for all y with an equal value
of sy. By using

pis =
∑

y∈{0,1}m:sy=s

yip(y) ,

one can transform (7) into the following expression:

h(k)∗ = argmax
h∈Hk

2

m∑

i=1

hi

m∑

s=1

pis
s+ k

. (8)

As a result, one does not need the whole distribution to solve (4), but only the
values of pis, which can be given in the form of an m×m matrix P with entries
pis. For the special case of k = 0, we have h(k)∗ = 0 and Ey∼p(Y ) [F (y,0)] =
p(Y = 0).

If the matrix P and p(Y = 0) are given, the solution of (3) is straight-forward.
To simplify the notation, let us introduce an m×m matrix W with elements

wsk =
1

s+ k
, s, k ∈ {1, . . . ,m} . (9)

The resulting algorithm needs then to compute the following matrix:

F = PW ,

with entries denoted by fik. The inner optimization problem (4) can then be
reformulated as follows:

h(k)∗ = argmax
h∈Hk

2

m∑

i=1

hifik .

The solution for a given k ∈ {1, . . . ,m} is obtained by setting hi=1 for the top
k largest elements in the k-th column of the matrix F, and hi= 0 for the rest.
The corresponding value of the expected F-measure for h(k)∗ has to be stored
for being used in the outer maximization. We also need to compute a case in
which k = 0:

Ey∼p(Y ) [F (y,0)] = p(Y = 0) .

The last step relies on solving the outer maximization (5):

h∗
F = argmax

h∈{h(0)∗ ,...,h(m)∗}
Ey∼p(Y ) [F (y,h)] .

The complexity of the above algorithm is dominated by the matrix multiplication
PW that is solved naively in O(m3). The algorithm needs m2 +1 parameters in
total, namely the matrix P and probability p(Y = 0).
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3.3 Discussion

The DP approach described in Section 3.1 and GFM are characterized by a
similar computational complexity, however, the former does not deliver an exact
F-measure maximizer if the assumption of independence is violated. On the
other hand, the DP approach relies on a smaller number of parameters (m values
representing marginal probabilities). GFM needs m2 + 1 parameters, but then
computes the maximizer exactly. Since estimating a larger number of parameters
is statistically more difficult, it is a priori unclear which method performs better
in practice. We are facing here a common trade-off between an approximate
method on better estimates (we need to estimate a smaller number of parameters
from a given sample) and an exact method on potentially weaker estimates.

4 Learning Parameters of the Distribution

In the above section, we described two inference techniques that compute the
F-measure maximizers based on delivered parameters of the label distribution.
To estimate these parameters we used two well-known methods for multi-label
classification: binary relevance and probabilistic classifier chains.

4.1 Binary Relevance

BR is the simplest approach to multi-label classification. It reduces the problem
to binary classification, by training a separate binary classifier hi(·) for each label.
Learning is performed independently for each label, ignoring all other labels.
Obviously, BR does not take label dependence into account, but with a proper
base classifier it is able to deliver accurate estimates of marginal probabilities.
These estimates can be further used as inputs in the DP inference algorithm.
BR is, however, not appropriate for GFM.

4.2 PCC

PCC [6] is an approach similar to Conditional Random Fields (CRFs) [7,8],
which estimates the joint conditional distribution p(Y |x). This approach has the
additional advantage that one can easily sample from the estimated distribution.
The underlying idea is to repeatedly apply the product rule of probability to the
joint distribution of the labels Y = (Y1, . . . , Ym):

p(Y = y |x) =
m∏

i=1

p(Yi = yi |x, y1, . . . , yi−1) . (10)

Learning in this framework can be considered as a procedure that relies on
constructing probabilistic classifiers for estimating p(Yi = yi|x, y1, . . . , yi−1), in-
dependently for each i = 1, . . . ,m. By plugging the log-linear model into (10), it
can be shown that pairwise dependencies between labels yi and yj are modeled.
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To sample from the conditional joint distribution p(Y |x), one follows the
chain and picks the value of label yi by tossing a biased coin with probabilities
given by the i-th classifier. From the sample of such observations one can estimate
all the parameters required by the GFM algorithm. One can also estimate the
marginal probabilities and use the DP algorithm. The result is not necessarily
the same as in BR, since we are using a more complex feature space here.

5 Results in the Competition

In this section we report results on the JRS 2012 Data Mining Competition
dataset of the methods we discussed in previous sections. Our preprocessing on
the competition data is quite straightforward: We simply delete all the empty
columns (i.e., zero vectors) in the training data, then the corresponding columns
in the test data. The values of features are normalized to [0, 1].

In both BR and PCC we use linear regularized logistic regression from the
Mallet package4 as a base classifier. We tune the regularization parameter for
each base classifier independently by minimizing the negative log-likelihood,
which should provide better probability estimates. We use 10-fold cross-validation
and we choose the regularization parameter from the following set of possible
values {10−5, 10−4, . . . , 105}. We use PCC with both inference methods and try
different sizes of sample generated from the conditional distribution of a given x.

The results of the methods are presented in Table 1. The F-measure is com-
puted over the entire test set delivered by the organizers after the competition.
This is a minor difference in comparison to the competition results which are
computed over 90% of test examples. The remaining 10% of test examples con-
stitute a validation set that served for computing the scores for the leaderboard
during the competition. The last row in the table gives the result of the final
method we used in the competition. It relies on averaging over all predictions
we computed during the competition. These predictions are the results of the
approaches presented in this paper but with different parametrization. In total
we gathered 16 predictions and we aggregated them via voting. In this voting
procedure we tested different thresholds on the validation set and selected the
best one (nine votes from 16).

From the results we can see that there is no big difference among the methods.
The voting procedure improves only slightly over BR+DP and PCC+GFM.
Interestingly, BR+DP performs here better than PCC+GFM, which suggests
independence of the labels. However, one can also observe that PCC+DP loses
against other methods. This shows that PCC with the sampling procedure has
problems with the accurate estimation of the marginal probabilities. Increasing
the sample size improves the results (for both, DP and GFM), but it still seems
that BR+DP is the most appropriate method in this case. It is the cheapest one,
since it does not require additional sampling in the inference step as PCC does,
and gives results only slightly worse than the voting method that averages over
many predictions.

4 http://mallet.cs.umass.edu/

http://mallet.cs.umass.edu/
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Table 1. The results of the presented methods obtained on the entire test set. The
numbers in parentheses denote the size of the sample in PCC.

Method F-measure Method F-measure

PCC+DP (50) 0.48650 PCC+GFM (50) 0.52286
PCC+DP (200) 0.51979 PCC+GFM (200) 0.53005
PCC+DP (1000) 0.52995 PCC+GFM (1000) 0.53146
BR+DP 0.53279 Voting (final submission) 0.53327

6 Conclusions

The JRS 2012 Data Mining Competition is essentially a multi-label learning
problem, where the objective is to optimize the instance-based F-measure. In
this paper, we have introduced several theoretically sound methods addressing
this optimization problem. We have shown that, although the F-measure max-
imization becomes significantly simpler under the assumption of independently
distributed labels, it can also be accomplished efficiently without this assump-
tion. Our final predictions are produced by a blend of all these methods and
have achieved a very satisfactory result, the second place in the competition.
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