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Abstract
So-called skyline queries have received consid-
erable attention in the field of databases in recent
years. Roughly speaking, the skyline of a given
set of objects, represented in terms of attributes
with preferentially ordered domains, is given by
the Pareto-optimal elements of this set. An im-
portant problem of Skyline queries is that answer
sets can become extremely large. From an appli-
cation point of view, a system response in terms
of a ranking of elements, ordered according to
the user’s preferences, would hence be more de-
sirable than an unordered set. In this paper, we
propose a method for constructing such a rank-
ing in an interactive way. The key idea of our
approach is to ask for user feedback on interme-
diate results, and to use this feedback to improve,
via the induction of a latent utility function, the
current ranking so as to represent the user’s pref-
erences in a more faithful way.

1 Introduction
The skyline operator and corresponding skyline queries
were first introduced by Baorzsaonyi et al. in 2001 [Borz-
sonyi et al., 2001] and, since then, have attracted consid-
erable attention in the field of databases. A skyline query
is a special type of preference query: The skyline of a d-
dimensional dataset consists of the data objects that are
non-dominated in a Pareto sense and, therefore, potentially
optimal for a user. Stated differently, each object that is not
on the skyline is of no interest, as it is definitely worse than
at least one other object in the dataset; more details about
skylines will follow in Section 2.1.

Pareto-dominance is an extreme conception of domi-
nance, as it is very demanding and, therefore, does not dis-
criminate well between alternatives. Consequently, a sky-
line query may produce huge answer sets, a problem that
aggravates with the dimensionality of the dataset and im-
pairs the usefulness of skyline queries. One idea to avoid
this problem is to exploit the preferences of a particular
user. In fact, a specific user will usually not be indifferent
between all skyline objects. Instead, the preference relation
of this user will be a refinement of the Pareto-dominance re-
lation, which is the weakest assumption on preferences one
can make and is valid for every user. If the user’s refined
preference relation was known, it could be used to further
reduce the set of candidate objects returned by the system
or, even better, to order these objects according to their de-
gree of preference.

In this paper, we present a special approach to informa-
tion retrieval (IR) that combines skyline computation and
ranking. The idea is to apply machine learning techniques
in order to elicit a specific user’s preferences, and to use
this knowledge to compute a ranking of the skyline ob-
jects. This idea is completely in line with research trends
in the IR field that are focused on user modeling [Shen et
al., 2005] and seek to exploit user feedback [Rochio, 1971;
Robertson and Jones, 1976; Salton and Buckley, 1990;
Shen and Zhai, 2005] for making retrieval systems interac-
tive, context-aware, and adaptive [Detyniecki et al., 2006].

To realize this idea, some kind of “training data” in the
form of preference information is of course needed. In or-
der to minimize the user’s effort, we integrate correspond-
ing preference questions into the learning process in a dy-
namic way. Roughly speaking, instead of separating the
training phase from the application, the idea is to immedi-
ately exploit every piece of information: Each preference
information is used to improve the current ranking of the
skyline; in case the user is still not satisfied with the result,
new information is requested, and this process is repeated
until the user has eventually found what he was search-
ing for. This procedure essentially corresponds to Rochio’s
well-known relevance feedback loop [Rochio, 1971].

The paper is organized as follows: The next section gives
some background information on the skyline operator and
research on ranking in the field of machine learning. Our
approach to ranking of skylines is then introduced in Sec-
tion 3 and empirically evaluated in Section 4. Section 5
outlines some reasonable extensions to be addressed in fu-
ture work, and Section 6 concludes the paper.

2 Background
2.1 The Skyline Operator
Consider a set of objects O represented in terms of a fixed
number d of attributes with preferentially ordered domains,
that is, “the less the better” or “the more the better” at-
tributes. In multi-criteria decision making, such attributes
are also called criteria; typical examples are the price of a
hotel and its distance from the beach. We shall denote the
ith attribute by Ai and its domain by Di. Thus, an element
of O is a vector

a = (a1 . . . ad) ∈ D1 × . . .×Dd.

Without loss of generality, we restrict ourselves to “the
more the better” attributes.

Given to objects a,b ∈ O, the former is said to (Pareto)
dominate the latter, a � b, if ai ≥ bi for all and ai > bi

for at least on i ∈ {1 . . . d}. An object b is non-dominated



if a 6� b for all a ∈ O. The skyline of O is then given by

S df= {a ∈ O |a is non-dominated }.

As mentioned previously, the skyline operator has recently
attracted a lot of attention in the field of databases. A typi-
cal skyline query in SQL syntax may look as follows [Borz-
sonyi et al., 2001]:

SELECT ∗
FROM Hotels
WHERE city = ‘New Port’
SKYLINE OF price MIN, distance

MIN

This query returns the set of hotels that are Pareto-optimal
with respect to the dimensions price and distance (from the
beach), which both ought to be minimized. Fig. 1 gives a
graphical illustration of this example.

Figure 1: Skyline (filled points) for the hotel example.

The problem of computing a skyline in an efficient way
has received special attention, and a large number of meth-
ods has already been devised (e.g., [Papadias et al., 2005;
Chomicki et al., 2002; Kossmann et al., 2002]). In this
regard, index-based methods [Tan et al., 2001] perform es-
pecially well, in particular when the size of the dataset is
large. As potential disadvantages, one may note that such
methods are restricted to numerical attributes for which an
index can be created, and that index-based methods become
problematic for high dimensions (“curse of dimensional-
ity”). In our current implementation, we resort to the simple
block nested loop approach, for which no kind of prepro-
cessing is required [Borzsonyi et al., 2001]. It maintains a
set S of objects in main memory, which is initially empty,
and scans the dataset. For each element a ∈ O, there are
three possibilities:
(a) a is dominated by an object in S and, hence, can be

discarded;
(b) one or more objects in S are dominated by a and,

hence, can be replaced by a;
(c) neither (a) nor (b) applies, so a is added to S without

removing other elements.
One easily verifies that S finally corresponds to the skyline
of O, that is, S = S.

Apart from algorithms for skyline computation, a num-
ber of conceptual modifications of skylines has been pro-
posed in the literature, including, e.g., dynamic skylines
[Papadias et al., 2005], subspace skylines [Pei et al., 2006],
and skybands [Papadias et al., 2005].

2.2 Ranking in Machine Learning
Ranking problems have received a great deal of attention
in the field of machine learning in recent years. Here,

the term “ranking” is used in different ways. In particu-
lar, a basic distinction between so-called label ranking and
object ranking can be made [Fürnkranz and Hüllermeier,
2005]. The problem of label ranking can be seen as
an extension of the basic setting of classification learn-
ing. Instead of learning a model that predicts, for each
query instance, one among a finite set of class labels,
the problem is to learn a model that predicts a complete
ranking of all labels [Fürnkranz and Hüllermeier, 2003;
Har-Peled et al., 2002].

The problem considered in this paper is more related to
object ranking or “learning to order things” (see, e.g., [Co-
hen et al., 1999; Domshlak and Joachims, 2005]). Here,
the task is to learn a function that, given a subset of objects
O from an underlying reference set X as input, outputs a
ranking of these objects. Training data typically consists of
exemplary pairwise preferences of the form x � x

′, with
x,x′ ∈ X . As a key difference between object and label
ranking, note that the latter associates a ranking of a fixed
number of labels with every instance x, whereas the former
is interested in ranking the instances themselves.

From a learning point of view, an important issue con-
cerns the evaluation of a predicted ranking. To this end, a
loss function is needed that, given a true ranking τ and a
prediction τ̂ thereof, measures the “distance” between the
former and the latter. The loss function is important, as it
reflects the purpose that a ranking is used for. For example,
in order to evaluate a ranking as a whole, one can resort
to well-known rank correlation measures such as Kendall’s
tau [Kendall, 1955]. In many applications, however, the
ranking itself is not of primary concern. Instead, a ranking
is only used as a means to find certain objects, hence, only
the positions of these objects are important. In this case,
measures such as precision and recall, commonly used in
information retrieval, are more suitable. In our experimen-
tal study, we shall use both types of measures (see Sec-
tion 4.2).

3 Ranking on Skylines
As mentioned earlier, our goal is to give a user-specific
answer to a skyline query by refining the general Pareto-
dominance into a more specific preference relation valid
for the user. In this regard, an important question is how
to represent the user’s preference. A common approach is
to use a utility function for this purpose, that is, a mapping
U : O → R that assigns a real utility degree to each ob-
ject a ∈ O. Obviously, given a utility function, ranking
becomes quite easy: a will precede b in the user-specific
ranking if U(a) ≥ U(b).

The assumption of a (latent) utility function may appear
quite restrictive. However, apart from the fact that this
assumption is commonly made also in many other fields,
ranging from economic utility theory to information re-
trieval, it should be mentioned that the user is not supposed
to be aware of this function, let alone to reveal it in an ex-
plicit form. In fact, we shall not require user feedback in the
form of utility degrees for particular objects, i.e., we shall
not directly ask for utility degrees U(a). Instead, we shall
only ask for the expression of comparative preferences of
the form “I like object a more than object b”, which is
much weaker and arguably more easy to elicit. Informa-
tion of that kind imposes a constraint on the utility func-
tion, namely U(a) > U(b). From a learning point of view,
the basic problem is hence to find a utility function U(·)
that is compatible with a set of constraints of this type. As
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a potential advantage of learning a latent utility function let
us also mention that, provided that reasonable assumptions
about this function can be made, this is a form of back-
ground knowledge that can highly increase the efficacy of
the learning process.

The monotonicity required for a utility function in our
context constitutes an interesting challenge from a machine
learning point of view. In fact, recall that all attributes are
assumed to be “the more the better” criteria. Therefore,

(a ≥ b) ⇒ (U(a) ≥ U(b)) (1)

should hold for all a,b ∈ O, where a ≥ b means ai ≥ bi

for all i = 1 . . . d. Interestingly, this relatively simple prop-
erty is not guaranteed by many standard machine learning
algorithms. That is, a model that implements a utility func-
tion U(·), such as a decision tree, may easily violate the
monotonicity property, even if this condition is satisfied by
all examples used as training data.

In this paper, we shall proceed from a very simple model,
namely a linear utility function

U(a) = 〈w,a〉 = w1a1 + . . . + wdad, (2)

for which monotonicity can easily be guaranteed. In fact,
for the model (2), the monotonicity property is equivalent
to the non-negativity of the weight vector w, i.e., wi ≥ 0
for i = 1 . . . d.

Despite its simplicity, the linear model (2) has a number
of merits. For example, it is easily interpretable, as a weight
wi is in direct correspondence with the importance of an at-
tribute. Thus, it also allows one to incorporate additional
background knowledge, e.g., that attribute Ai is at least
twice as important as Attribute Aj , in a convenient way
(wi > 2wj). Finally, the linear model is attractive from a
machine learning point of view, as it is amenable to effi-
cient learning algorithms and, moreover, to non-linear ex-
tensions via “kernalization” [Schölkopf and Smola, 2001].

Before going into more technical detail, we give a rough
outline of our approach as a whole. As a point of departure,
we consider a user who is searching a database for an object
that satisfies his needs. Roughly speaking, we assume that
the user is searching an object with high enough utility (a
“top-K” object) but does not necessarily insist on finding
the optimal one.

1. The first step consists of computing the skyline S of
a relation constructed by the user (e.g., by an SQL
query); in particular, this involves a projection to a
subset A1 . . . Ad of attributes the user considers rel-
evant. The objects in S are the potential candidates
regarding the user’s final choice.

2. Starting with a utility function trained on a small ini-
tial training set,1 the objects S are sorted according to
their degree of utility, and the ranking is presented to
the user.

3. The user is asked to inspect the ranking, typically by
looking at the top elements. If a suitable object is
found, the process terminates.

4. In case the user is not yet satisfied, he will be asked for
additional feedback, which in turn is used to expand
the training data.

1A minimal number of training examples is necessary to make
the learning problem “well-posed”. This number depends on the
learning algorithm and the underlying model class. In our experi-
ments, we always started with 5 exemplary pairwise preferences.

5. The preference model (utility function) is re-trained,
an improved ranking is derived, and the process con-
tinues with 3.

3.1 The Learning Algorithm
Suppose to be given a set of training data T, which consists
of pairwise preferences of the form a � b, where a,b ∈ S.
As mentioned previously, the basic learning problem is to
find a utility function which is as much as possible in agree-
ment with these preferences and, moreover, satisfies the
monotonicity constraint (1). Besides, this function should
of course generalize as well as possible beyond these pref-
erences.

Due to the assumption of a linear utility model, our
learning task essentially reduces to a binary classification
problem: The constraint U(a) > U(b) induced by a
preference a � b is equivalent to 〈w,a − b〉 > 0 and
〈w,b−a〉 < 0. From a binary classification point of view,
a − b is hence a positive example and b − a is a negative
one.

Binary classification is a well-studied problem in ma-
chine learning, and a large repertoire of corresponding
learning algorithms is available. In our approach, we use
a Bayes point machine, which seeks to find the midpoint of
the region of intersection of all hyperplanes bisecting the
version space into two halves of equal volume. This mid-
point, the Bayes point, is known to be approximated by the
center of mass of the version space [Herbrich et al., 2001].
More specifically, we use an approximate method proposed
in [Herbrich et al., 2001] that makes use of an ensemble of
perceptrons trained on permutations of the original train-
ing data. This approach has several advantages, notably
the following: Firstly, it allows us to incorporate the mono-
tonicity constraint in a relatively simple way. Secondly, as
will be detailed in Section 3.2, the ensemble of perceptrons
is also useful in connection with the selection of informa-
tive queries given to the user.

The simple perceptron algorithm is an error-driven on-
line algorithm that adapts the weight vector w in an incre-
mental way. To guarantee monotonicity, we simply modify
this algorithm as follows: Each time an adaptation of w

produces a negative component wi < 0, this component is
simply set to 0. Roughly speaking, the original adaptation
is replaced by a “thresholded” adaptation. In its basic form,
the perceptron algorithm provably converges after a finite
number of iterations, provided the data is linearly separa-
ble. Even though we shall not go into further detail here, we
note that this property is provably preserved by our modifi-
cation.

The center of mass of the version space (and hence the
Bayes point) is approximated in terms of the average of the
perceptrons’ weight vectors. Obviously, monotonicity of
the single perceptrons implies monotonicity of this approx-
imation.

3.2 Generating Queries
In case the user is not satisfied with the current ranking,
our approach envisions a training step in which the model
is updated on the basis of additional user feedback. This
feedback is derived from a query, in which the user is asked
for his preference regarding two objects a and b and, cor-
respondingly, consists of a pairwise preference a � b or
a ≺ b that complements the training set T. The simplest
way to generate a query pair (a,b) is to choose it at random
from S×S. However, realizing that the information content
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of different query pairs can be quite different, the goal of
this step should of course be the selection of a maximally
informative query, i.e., an example that helps to improve
the current model as much as possible. This idea of gen-
erating maximally useful examples in a targeted way is the
core of active learning strategies.2

In the literature, various strategies for active learning
have been proposed, most of them being heuristic approx-
imations to theoretically justified (though computationally
or practically infeasible) methods. Here, we resort to the
Query By Committee approach [Seung et al., 1992]. Given
an ensemble (committee) of models, the idea is to find a
query for which the disagreement between the predictions
of these models is maximal. Intuitively, a query of that
kind corresponds to a “critical” and, therefore, potentially
informative example.

In our case, the models are given by the perceptrons in-
volved in the Bayes point approximation. Moreover, two
models disagree on a pair (a,b) ∈ S × S if one of them
ranks a ahead of b and the other one b ahead of a.

Needless to say, various strategies to find a maximally
critical query, i.e., a query for which there is a high dis-
agreement between the committee members, are conceiv-
able. Our current implementation uses the following, rel-
atively simple approach: Let W = {w1 . . .wm} be the
set of weight vectors of the perceptrons that constitute the
committee, respectively. In a first step, the two maximally
conflicting models are identified, that is, two weight vectors
{wi,wj} ⊂ W such that ‖wi − wj‖ becomes maximal.
Then, the two rankings τi and τj associated, respectively,
with these models are considered. Starting at the top of
these ranking, the first conflict pair (a,b) is found and se-
lected as a query; obviously, this pair is identified by the
first position p such that τi and τj have different objects
(namely a and b, respectively) on this position.3

4 Experimental Results
This section presents the results of some experimental stud-
ies that we conducted in order to get a first idea of the effi-
cacy of our approach. In this regard, an important question
was whether our idea of using machine learning techniques
is effective in the sense that it helps to improve the rank-
ing quality relatively quickly, that is, with an acceptable
amount of user feedback. Besides, we investigated more
specific questions, such as the increase in performance due
to the use of a monotone learner and an active learning
strategy, and the dependence of the ranking quality (train-
ing effort) on the dimensionality of the data.

4.1 Data
Our experiments are based on both artificial and real-world
data. The artificial data is repeatedly extracted from a set of
50,000 points, generated at random according to a uniform
distribution in the 9-dimensional unit hypercube. First, the
skyline of these points is computed. Then, for each exper-
iment, a random weight vector w is generated (whose en-
tries wi are independent and uniformly distributed in [0, 1])

2The idea of active learning has already been applied in other
fields of information retrieval, for example in image retrieval
[Tong and Chang, 2001].

3In principle, an additional strategy is needed for the case
where τi = τj . However, even though this problem is theoret-
ically possible, it never occurred in our experiments. Therefore,
we omit further details here.

and the skyline is sorted according the utility degrees de-
fined by this vector.

As real-world data, we used the ranking of the top-200
universities world-wide provided by [O’Leary, 2006]. This
data set is particularly suitable due to the following rea-
sons: Firstly, it includes information about the ground-
truth, namely the correct ranking. Secondly, the data fits
the setting of Skyline computation, as the universities are
evaluated in terms of six (normalized) numerical attributes
(peer review score, recruiter review score, international fac-
ulty score, international students score, staff-to-student ra-
tio, citation-to-staff ratio). Thirdly, the data even meets the
assumptions of our linear utility model, as the universities
are ranked according to a total score which is a weighted
linear combination of the individual scores.

4.2 Quality Measures
To measure the quality of a prediction, a kind of distance
function is needed that compares a predicted ranking τ̂ with
the true target ranking τ . As mentioned before, different
types of measures can be used for this purpose. To mea-
sure the quality of the predicted ranking as a whole, we
use the well-known Kendall tau coefficient that essentially
calculates the number of pairwise rank inversions, i.e., the
number of discordant pairs (a,b):

# {(a,b) | τ(a) < τ(b), τ̂(a) > τ̂(b)} ,

where τ(a) is the position of object a in the ranking τ .
More specifically, the Kendall tau coefficient normalizes
this number to the interval [−1,+1] such that +1 is ob-
tained for identical rankings and −1 in the case of reversed
rankings.

To complement the rank correlation, we employed a sec-
ond measure that is closely related to the recall measure
commonly used in information retrieval. Let K be the set
of top-k elements of the ranking τ , that is, K = {a ∈ S |
τ(a) ≤ k}, where k is an integer that is usually small in
comparison with the size of the skyline (as a default value,
we use k = 10); likewise, let K̂ denote the top-K elements
of τ̂ . We then define

recall(τ, τ̂) =
#(K ∩ K̂)

k
. (3)

This measure corresponds to the percentage of true among
the predicted top-k elements. It is motivated by the as-
sumption that, typically, a user will only check the top-k
elements of a ranking. Thus, the more K and K̂ are in
agreement, the higher the chance that the user finds a satis-
fying object.

4.3 Experiment 1
In a first experiment, we applied our approach to the data
sets described in Section 4.1. To investigated the effect of
ensuring monotonicity of the learner, we used two different
versions:

• Monotone: Our method that ensures monotonicity
(and uses active learning to generate queries).

• Non-monotone: The non-monotone version of our
learning algorithm, that is, a Bayes point machine us-
ing standard perceptrons as base learners.

The results are shown in Fig. 2–5. As can be seen, incorpo-
rating monotonicity seems to have an important effect on
the predictive accuracy of the learner.
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Figure 2: Rank correlation for synthetic data: Monotone
vs. non-monotone learning.

4.4 Experiment 2
In a second experiment, we investigated the effect of our
active learning strategy. To this end, we compared the re-
sults for two different approaches:
• Active: Our method that selects queries in an active

way (and ensures monotonicity).
• Non-active: The method obtained by replacing our ac-

tive learning component by a non-active strategy that
selects a query at random, i.e., by randomly selecting
two objects a,b ∈ S.

The results are shown in Fig. 6–9. As can be seen, active
learning indeed pays off and clearly outperforms the alter-
native strategy of selecting queries at random.

4.5 Experiment 3
In a third experiment, we investigated the influence of the
dimensionality of the data. To this end, we used projections
of the original synthetic data set to subspaces of different
dimensions. The corresponding performance curves are
shown in Fig. 10. Since the dimensionality of the data does
have an influence on the size of the skyline and, therefore,
on the length of a ranking, the recall measure (3) does not
guarantee a fair comparison. Therefore, the performance is
only compared in terms of rank correlation.

As expected, the results indicate that the difficulty of the
problem increases with the dimensionality of the data. For-
tunately, however, the dependence between dimensionality
and training effort seems to be “only” linear. This is sug-
gested by the results shown in Fig. 11, where the number
of queries needed to reach a certain quality level is plotted
against the dimensionality of the data.

5 Extensions
Despite the promising results reported in the previous sec-
tion, our approach calls for several extensions. In the fol-
lowing, we shall outline some concrete points that we plan
to address in future work.
• More general utility models: Due to the fact that a

ranking is to some extent insensitive toward modifica-
tions of the utility model (different models may induce
the same or at least similar rankings), sufficiently good
rankings may already be obtained with utility models
that are only approximately correct. Still, the assump-
tion of a linear utility function is of course quite re-
strictive, and such models will probably not be flexi-
ble enough in practical applications. Therefore, we al-
ready conducted first experiments with more general,
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Figure 3: Recall for synthetic data: Monotone vs. non-
monotone learning.
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Figure 4: Rank correlation for real data: Monotone vs. non-
monotone learning.
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Figure 5: Recall for real data: Monotone vs. non-monotone
learning.
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Figure 6: Rank correlation for synthetic data: Active vs.
non-active learning.
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Figure 7: Recall for synthetic data: Active vs. non-active
learning.
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Figure 8: Rank correlation for real data: Active vs. non-
active learning.
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Figure 9: Recall for real data: Active vs. non-active learn-
ing.
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Figure 10: Rank correlation for synthetic data depending
on the dimension of the data.
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non-linear utility models and obtained results quite
comparable to those presented in this paper. The ba-
sic idea is to “kernalize” the linear utility function,
which is a standard approach in the field of kernel-
based learning.

• Robust learning algorithms: In practice, user feed-
back will not always be correct. Instead, the prefer-
ences stated by a user may contain errors. From a ma-
chine learning point of view, it is therefore important
to make learning algorithms tolerant toward “noisy”
training data.

• Learning order relations on attribute domains: The
standard setting of skyline computation assumes all
attributes to be criteria, i.e., to have totally ordered do-
mains. In practice, this assumption is quite restrictive
and does obviously not hold for attributes such as, say,
color [Balke and Güntzer, 2005]. From a learning
point of view, an obvious idea is to start without prior
assumptions, and instead to learn the corresponding
order relation from the user’s revealed preferences,
e.g., to learn that a user prefers green to red. In
this regard, one may also give up the assumption of
a total order and allow for partial orders. Moreover,
since preferences for attribute values are clearly not
independent, it may become necessary to learn order
relations not only in one-dimensional but perhaps also
in higher-dimensional subspaces.

• Integration of skyline computation and ranking: Un-
til now, skyline computation and ranking are simply
carried out in succession, so the integration between
them is not very tight. This will change, however, in
connection with the aforementioned learning of order
relations on attribute domains, since a change of an
order relation will also change the dominance relation
between objects and, therefore, the skyline. Conse-
quently, skyline computation and ranking will have to
be carried out in an alternate rather than a consecutive
manner.

• Deviating from the skyline: A monotone utility model
is in agreement with Pareto-dominance in the sense
that the object a

∗ ∈ O with highest utility is non-
dominated and, hence, an element of the skyline. The
other way round, however, it is well possible that, ac-
cording to a given utility model, a user prefers an ob-
ject a which is not on the skyline to an object b which
is on the skyline. In principle, this is unimportant as
long as we assume that a user is only searching for a
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single object. However, if the user is looking for more
than one object, it will be useful to include dominated
alternatives in the ranking, namely those objects with
high utility. And even if the user is searching only a
single object, including such objects may speed up the
search process, as it increases the likelihood of find-
ing a satisfying alternative. On the other hand, one
may think of disregarding those points of the skyline
which have a rather low utility, as it is unlikely that
such elements will ever move to the top of the ranking.
A corresponding pruning strategy would offer another
means to increase efficiency. Of course, both mea-
sures, the adding of dominated alternatives as well as
the pruning of non-dominated ones, presuppose a cer-
tain degree of reliability of the current utility model.

• Valued preferences: Instead of only asking a user
whether he prefers object a to b or b to a, one may al-
low him to express a degree of preference; as a special
case, this includes the expression of indifference. An
interesting question is whether additional information
of that kind can be helpful for producing good rank-
ings.

• From single users to user groups: In this paper, we fo-
cused on learning the preferences of a single user. In
practice, a system will of course be used by more than
one person. In this regard, an obvious idea is to ex-
ploit the preferences expressed by one user to support
another one. In fact, this strategy can help to reduce
the feedback requested from the latter user, provided
that the preferences are sufficiently similar. A hypo-
thetical transfer of preferences could be done, for ex-
ample, on the basis of the active user’s preferences ex-
pressed so far, an idea which is also on the basis of col-
laborative filtering techniques [Goldberg et al., 1992;
Breese et al., 1998]. Another idea is to use cluster-
ing techniques in order to find homogeneous groups
of users, and to learn utility models that are repre-
sentative of these groups [Chajewska et al., 2000;
2001].

6 Conclusion
This paper has presented a first study on the combination of
skyline computation and machine learning techniques for
ranking. The basic motivation is to make skyline queries
more user-friendly by providing answers in the form of a
ranking of objects, sorted in terms of the user’s preferences,
instead of returning an unordered and potentially huge an-
swer set.

Our first results are promising in the sense that, appar-
ently, relatively accurate rankings can be produced with an
acceptable effort in terms of user feedback. The empirical
results are interesting also at a more technical level, since
they show that enforcing monotonicity of the learned utility
model does indeed improve performance, just like using an
active learning strategy to select informative queries.

As outlined in the previous section, we plan to extend our
approach in various directions, some of which are currently
investigated as part of ongoing work.
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