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Abstract Most of the multi-label classification (MLC) methods proposed in recent years
intended to exploit, in one way or the other, dependencies between the class labels. Compar-
ing to simple binary relevance learning as a baseline, any gain in performance is normally
explained by the fact that this method is ignoring such dependencies. Without questioning
the correctness of such studies, one has to admit that a blanket explanation of that kind is
hiding many subtle details, and indeed, the underlying mechanisms and true reasons for
the improvements reported in experimental studies are rarely laid bare. Rather than propos-
ing yet another MLC algorithm, the aim of this paper is to elaborate more closely on the
idea of exploiting label dependence, thereby contributing to a better understanding of MLC.
Adopting a statistical perspective, we claim that two types of label dependence should be
distinguished, namely conditional and marginal dependence. Subsequently, we present three
scenarios in which the exploitation of one of these types of dependence may boost the pre-
dictive performance of a classifier. In this regard, a close connection with loss minimization
is established, showing that the benefit of exploiting label dependence does also depend on
the type of loss to be minimized. Concrete theoretical results are presented for two repre-
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sentative loss functions, namely the Hamming loss and the subset 0/1 loss. In addition, we
give an overview of state-of-the-art decomposition algorithms for MLC and we try to re-
veal the reasons for their effectiveness. Our conclusions are supported by carefully designed
experiments on synthetic and benchmark data.

Keywords Multi-label classification · Label dependence · Loss functions

1 Introduction

In contrast to conventional (single-label) classification, the setting of multi-label classifi-
cation (MLC) allows an instance to belong to several classes simultaneously. At first sight,
MLC problems can be solved in a quite straightforward way, namely through decomposition
into several binary classification problems; one binary classifier is trained for each label and
used to predict whether, for a given query instance, this label is present (relevant) or not.
This approach is known as binary relevance (BR) learning.

However, BR has been criticized for ignoring important information hidden in the label
space, namely information about the interdependencies between the labels. Since the pres-
ence or absence of the different class labels has to be predicted simultaneously, it is arguably
important to exploit any such dependencies.

In current research on multi-label classification, it seems to be an opinio communis that
optimal predictive performance can only be achieved by methods that explicitly account
for possible dependencies between class labels. Indeed, there is an increasing number of
papers providing evidence for this conjecture, mostly by virtue of empirical studies. Often,
a new approach to exploiting label dependence is proposed, and the corresponding method
is shown to outperform others in terms of different loss functions. Without questioning the
potential benefits of exploiting label dependencies in general, we argue that studies of this
kind do often fall short of deepening the understanding of the MLC problem. There are
several reasons for this, notably the following:

– The notion of label dependence or “label correlation” is often used in a purely intuitive
manner without giving a precise formal definition. Likewise, MLC methods are often
ad-hoc extensions of existing methods for multi-class classification.

– Many studies report improvements on average, but without carefully investigating the
conditions under which label dependencies are useful and when they are perhaps less
important. Apart from properties of the data and the learner, for example, it is plausible
that the type of performance measure is important in this regard.

– The reasons for improvements are often not carefully distinguished. As the performance
of a method depends on many factors, which are hard to isolate, it is not always clear that
the improvements can be fully credited to the consideration of label dependence.

– Moreover, a multitude of loss functions can be considered in MLC, and indeed, a large
number of losses has already been proposed and is commonly applied as performance
metrics in experimental studies. However, even though these loss functions are of a quite
different nature, a concrete connection between the type of multi-label classifier used and
the loss to be minimized is rarely established, implicitly giving the misleading impression
that the same method can be optimal for different loss functions.

The aim of this paper is to elaborate on the issue of label dependence in more detail,
thereby helping to gain a better understanding of the mechanisms behind MLC algorithms
in general. Subsequent to a formal problem description in Sect. 2, we will propose a dis-
tinction between two different types of label dependence in MLC (Sect. 3). These two types
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will be referred to as conditional and marginal (unconditional) label dependence, respec-
tively. While the latter captures dependencies between labels conditional to a specific in-
stance, the former is a global type of dependence, independent of any concrete observation.
In Sect. 4, we distinguish three different (though not necessarily disjoint) views on MLC.
Roughly speaking, an MLC problem can either be seen as a set of interrelated binary clas-
sification problems or as a single multivariate prediction problem. Our discussion of this
point will reveal a close interplay between label dependence and loss minimization. Theo-
retical results making this interplay more concrete are given in Sect. 5, where we analyze
two specific but representative loss functions, namely the Hamming loss and the subset 0/1
loss. Furthermore, in Sect. 6, a selection of state-of-the-art MLC algorithms is revisited in
light of exploiting label dependence and minimizing different losses. Using both synthetic
and benchmark data, Sect. 7 presents several experimental results on carefully selected case
studies, confirming the conclusions that were drawn earlier on the basis of theoretical con-
siderations. We end with a final discussion about facts, pitfalls and open challenges on
exploiting label dependencies in MLC problems. Let us remark that this paper combines
material that we have recently published in three other papers (Dembczyński et al. 2010a;
Dembczyński et al. 2010b; Dembczyński et al. 2010c). However, this paper discusses in
more detail the distinction between marginal and conditional dependence and introduces
the three different views on MLC. The risk minimizers for multi-label loss functions have
been firstly discussed in Dembczyński et al. (2010a). The theoretical analysis of the two loss
functions, the Hamming and the subset 0/1 loss, comes from Dembczyński et al. (2010c),
however, the formal proofs of the theorems have not yet been published. The paper also ex-
tends the discussion given in Dembczyński et al. (2010b) on different state-of-the-art MLC
algorithms and contains new experimental results.

2 Multi-label classification

Let X denote an instance space, and let L = {λ1, λ2, . . . , λm} be a finite set of class labels.
We assume that an instance x ∈ X is (non-deterministically) associated with a subset of
labels L ∈ 2L ; this subset is often called the set of relevant labels, while the complement
L \ L is considered as irrelevant for x. We identify a set L of relevant labels with a binary
vector y = (y1, y2, . . . , ym), in which yi = 1 ⇔ λi ∈ L. By Y = {0,1}m we denote the set of
possible labellings.

We assume observations to be generated independently and identically according to a
probability distribution P(X,Y) on X × Y , i.e., an observation y = (y1, . . . , ym) is a re-
alization of a corresponding random vector Y = (Y1, Y2, . . . , Ym). We denote by P(y |x)

the conditional distribution of Y = y given X = x, and by P(Yi = b|x) the corresponding
marginal distribution of Yi :

P(Yi = b|x) =
∑

y∈Y:yi=b

P(y|x).

In general, a multi-label classifier h is an X → Rm mapping that for a given instance x ∈ X
returns a vector

h(x) = (
h1(x), h2(x), . . . , hm(x)

)
.

The problem of MLC can then be stated as follows: Given training data in the form of a
finite set of observations (x,y) ∈ X × Y , drawn independently from P(X,Y), the goal is to
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learn a classifier h : X → Rm that generalizes well beyond these observations in the sense
of minimizing the risk with respect to a specific loss function.

The risk of a classifier h is defined formally as the expected loss over the joint distribution
P(X,Y):

RL(h) = EXYL
(
Y,h(X)

)
, (1)

where L(·) is a loss function on multi-label predictions. The so-called risk-minimizing
model h∗ is given by

h∗ = arg min
h

EXYL
(
Y,h(X)

) = arg min
h

EX
[
EY|XL

(
Y,h(X)

)]
(2)

and determined in a pointwise way by the risk minimizer

h∗(x) = arg min
y

EY|XL(Y,y). (3)

Remark that the risk minimizer is not necessarily unique. For simplicity we avoid to use
a set notation, but all theorems presented below also hold in the case of non-unique risk
minimizers.

Usually, the image of a classifier h is restricted to Y , which means that it assigns a pre-
dicted label subset to each instance x ∈ X . However, for some loss functions that correspond
to slightly different tasks like ranking or probability estimation, the prediction of a classifier
is not limited to binary vectors.

3 Stochastic label dependence

Since MLC algorithms analyze multiple labels Y = (Y1, Y2, . . . , Ym) simultaneously, it is
worth to study any dependence between them. In this section, we analyze the stochastic
dependence between labels and make a distinction between conditional and marginal de-
pendence. As will be seen later on, this distinction is crucial for MLC learning algorithms.

3.1 Marginal and conditional label dependence

As mentioned previously, we distinguish two types of label dependence in MLC, namely
conditional and marginal (unconditional) dependence. We start with a formal definition of
the latter.

Definition 1 A random vector of labels

Y = (Y1, Y2, . . . , Ym) (4)

is called marginally independent if

P(Y) =
m∏

i=1

P(Yi). (5)

Conditional dependence, in turn, captures the dependence of the labels given a specific
instance x ∈ X .

Definition 2 A random vector of labels (4) is called conditionally independent given x if

P(Y|x) =
m∏

i=1

P(Yi |x). (6)
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Recall that the conditional joint distribution of a random vector Y = (Y1, . . . , Ym) can be
expressed by the product rule of probability:

P(Y|x) = P(Y1|x)

m∏

i=2

P(Yi |Y1, . . . , Yi−1,x). (7)

If Y1, . . . , Ym are conditionally independent, then (7) simplifies to (6). The same remark
obviously applies to the unconditional joint probability.

The above two types of dependence may look very similar, since they only differ in the
use of marginal and conditional probability measures. Moreover, we have a strong connec-
tion between marginal and conditional dependence, since

P(Y) =
∫

X
P(Y|x) dμ(x), (8)

where μ is the probability measure on the input space X induced by the joint probability
distribution P on X × Y . Roughly speaking, marginal dependence is a kind of “expected
dependence”, averaged over all instances. Despite this close connection, one can easily con-
struct examples showing that conditional dependence does not imply marginal dependence
nor the other way around.

Example 1 Consider a problem with two labels Y1 and Y2, both being independently gener-
ated through the same logistic model P(Yi = 1|x) = (1+exp(−φf (x)))−1, where φ controls
to the Bayes error rate. Thus, by definition, the two labels are conditionally independent,
having joint distribution P(Y|x) = P(Y1|x) × P(Y2|x) given x. However, depending on the
value of φ, we will have a stronger or weaker marginal dependence. For φ → ∞ (Bayes
error rate tends to 0), the marginal dependence increases toward an almost deterministic one
(y1 = y2).

The next example shows that conditional dependence does not imply marginal depen-
dence.

Example 2 Consider a problem in which two labels Y1 and Y2 are to be predicted by using
a single binary feature x1. Let us assume that the joint distribution P(X1, Y1, Y2) on X × Y
is given as in the following table:

x1 y1 y2 P x1 y1 y2 P

0 0 0 0.25 1 0 0 0
0 0 1 0 1 0 1 0.25
0 1 0 0 1 1 0 0.25
0 1 1 0.25 1 1 1 0

For this example, we observe a strong conditional dependence. One easily verifies, for exam-
ple, that P(Y1 = 0|x1 = 1)P(Y2 = 0|x1 = 1) = 0.5 × 0.5 = 0.25, while the joint probability
is P(Y1 = 0, Y2 = 0|x1 = 1) = 0. One can even speak of a kind of deterministic dependence,
since y1 = y2 for x1 = 0 and y2 = 1 − y1 for x1 = 1. However, the labels are marginally
independent. In fact, noting that the marginals are given by P(y1) = P(y2) = 0.5, the joint
probability is indeed the product of the marginals.
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3.2 Modeling label dependence

Let us adopt the standard statistical notation for describing a multi-output model, namely

Yi = hi(X) + εi(X) (9)

for all i = 1, . . . ,m, where the functions hi : X → {0,1} represent the structural parts of
the model and the random variables εi(x) the stochastic parts. This notation is commonly
used in multivariate regression (Hastie et al. 2007, Chap. 3.2.4), a problem quite similar to
MLC. The main difference between multivariate regression and MLC concerns the type of
output, which is real-valued in the former and binary in the latter. A standard assumption of
multivariate regression, namely

E
[
εi(x)

] = 0 (10)

for all x ∈ X and i = 1, . . . ,m, is therefore not reasonable in MLC.
In general, the distribution of the noise terms can depend on x. Moreover, two noise

terms εi and εj can also depend on each other, as also the structural parts of the model, say
hi and hj , may share some similarities between each other. From this, we can find that there
are two possible sources of label dependence: the structural part of the model h(·) and the
stochastic part ε(·).

It seems that marginal dependence between labels is caused by the similarity between
the structural parts hi(·), simply because one can reasonably assume that the structural part
will dominate the stochastic part. Roughly speaking, if there is a function f (·) such that
hi ≈ f ◦ hj , meaning that

hi(x) = f
(
hj (x)

) + g(x), (11)

with g(·) being “negligible” in the sense that g(x) = 0 with high probability (i.e., for most
x), then this “f -dependence” between hi and hj is likely to dominate the averaging process
in (8), whereas g(·) and the error terms εi will play a less important role (or simply cancel
out). This is the case, for example, when the Bayes error rate of the classifiers is relatively
low. In other words, the dependence between hi and hj , despite being only probable and
approximate, will induce a dependence between the labels Yi and Yj .

Example 3 Consider a simple problem with a two-dimensional input x = (x1, x2) uniformly
distributed in [−1,+1]× [−1,+1], and two labels Y1, Y2 distributed as follows. The first la-
bel is set to one for positive values of x1, and to zero for negative values, i.e., Y1 = [[x1 > 0]].1
The second label is defined in the same way, but the decision boundary (x1 = 0) is rotated
by an angle α ∈ [0,π ]. The two decision boundaries partition the input space into four
regions Cij identified by i = Y1 and j = Y2. Moreover, the two error terms shall be inde-
pendent and both flip the label with a probability 0.1 (i.e., ε1 = 0 with probability 0.9 and
ε1 = 1 − 2[[x1 > 0]] with probability 0.1); see Fig. 1 for a typical dataset. For α close to
0, the two labels are almost identical, so a high correlation will be observed, whereas for
α = π , they are orthogonal to each other, resulting in a low correlation. More specifically,
(11) holds with f (·) the identity and g(x) given by ±1 in the “overlap regions” C01 and C10

(shaded in gray) and 0 otherwise.

1For a predicate P , the expression [[P ]] evaluates to 1 if P is true and to 0 if P is false.
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Fig. 1 Exemplary dataset: The
two labels are encoded as
neighbored squares, colored in
black for positive and white for
negative

From this point of view, marginal dependence can be seen as a kind of (soft) constraint
that a learning algorithm can exploit for the purpose of regularization. This way, it may
indeed help to improve predictive accuracy, as will be shown in subsequent sections.

On the other hand, it seems that the stochastic part of the model εi(·) is responsible for
the conditional dependence. The posterior probability distribution P(Y|x) provides a conve-
nient point of departure for analyzing conditional label dependence, since it informs about
the probability of each label combination as well as the marginal probabilities. In a stochas-
tic sense, as defined above, there is a dependency between the labels if the joint conditional
distribution is not the product of the marginals. For instance, in our example above, condi-
tional independence between Y1 and Y2 follows from the assumption of independent error
terms ε1 and ε2. This independence is lost, however, when assuming a close dependency
between the error terms, for example ε1 = ε2. In fact, even though the marginals will remain
the same, the joint distribution will change in that case. The following table compares the
two distributions for an instance x from the region C11:

P(Y|x) 0 1 P(Y1|x)

0 0.01|0.10 0.09|0.00 0.10
1 0.09|0.00 0.81|0.90 0.90

P(Y2|x) 0.10 0.90 1

To make a connection to our model (9) we have to define the error terms εi(·) in a proper
way. In terms of their expectation, we have

E
[
εi(x)

] =
{

P(Yi = 1|x) if hi(x) = 0,

−P(Yi = 0|x) if hi(x) = 1,

for i = 1, . . . ,m and

E
[
εi(x)εj (x)

] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P(Yi = 1, Yj = 1|x) if hi(x) = 0, hj (x) = 0,

−P(Yi = 1, Yj = 0|x) if hi(x) = 0, hj (x) = 1,

−P(Yi = 0, Yj = 1|x) if hi(x) = 1, hj (x) = 0,

P(Yi = 0, Yj = 0|x) if hi(x) = 1, hj (x) = 1,

for i, j = 1, . . . ,m. This observation implies the following proposition that directly links the
stochastic part of the model with conditional dependence.



12 Mach Learn (2012) 88:5–45

Proposition 1 A vector of labels (4) is conditionally dependent given x if and only if the
error terms in (9) are conditionally dependent given x, i.e.,

E
[
ε1(x) × · · · × εm(x)

] 	= E
[
ε1(x)

] · · ·E[
εm(x)

]
.

Proof When conditioning on a given input x, one can write Yi = q(εi) with q a function.
Independence of the error terms then implies independence of the labels. The reverse state-
ment also holds because h becomes a constant for a given x. �

A less general statement has been put forward in Dembczyński et al. (2010b), and inde-
pendently in Zhang and Zhang (2010).

Let us also underline that conditional dependence may cause marginal dependence, be-
cause of (8). In other words, the similarity between the models is not the only source of the
marginal dependence.

Briefly summarized, one will encounter conditional dependence between labels if depen-
dencies are observed in the errors terms of the model. On the other hand, the observation
of label correlations in the training data will not necessarily imply any dependence between
error terms. Label correlations only provide evidence for the existence of marginal depen-
dence between labels, even though the conditional dependence might be a cause of this
dependence.

In the remainder of this paper, we will address the idea of exploiting label dependence
in learning multi-label classifiers in more detail. We will claim that exploiting both types of
dependence, marginal and conditional, can in principle improve the generalization perfor-
mance, but the true benefit does also depend on the particular formulation of the problem.
Furthermore, we will also argue that some of the existing algorithms are interpreted in a
somewhat misleading way.

4 Three views on multi-label classification

In this section, a link between label dependence and loss minimization is established. As
will be seen, this link follows quite naturally, since the discussion of the dependence of error
terms boils down to a discussion about loss functions. Moreover, the existence of multiple
labels suggests to look at the learning problem from different perspectives. In terms of loss
minimization, we distinguish three views, each of them being determined by the type of loss
function to be minimized, the type of dependence taken into account, and the distinction
between marginal and joint distribution estimation.

1. The “individual label” view: How can we improve the predictive accuracy of a single
label by using information about other labels? Moreover, what are the requirements for
improvement? (This view is closely connected to transfer and multi-task learning (Caru-
ana 1997).)

2. The “joint label” view: What type of proper (non-decomposable) MLC loss functions is
suitable for evaluating a multi-label prediction as a whole, and how to minimize such
loss functions?

3. The “joint distribution” view: Under what conditions is it reasonable (or even necessary)
to estimate the joint conditional probability distribution over all label combinations?
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4.1 Improving single label predictions

Let us first analyze the following question: Can we improve the predictive accuracy for a
single label by using the information about other labels? In other words, the question is
whether we can improve the binary relevance approach by exploiting relationships between
labels. We will refer to this scenario as single label predictions.

More generally, the question relates to problems in which the goal is to minimize a loss
function that is label-wise decomposable. The simplest loss function of this type is Hamming
loss, which is defined as the fraction of labels whose relevance is incorrectly predicted:

LH

(
y,h(x)

) = 1

m

m∑

i=1

[[
yi 	= hi(x)

]]
. (12)

For the Hamming loss (12), it is easy to see that the risk minimizer (3) is obtained by

h∗
H (x) = (

hH1(x), . . . , hHm(x)
)
,

where

hHi
(x) = arg max

b∈{0,1}
P(Yi = b|x) (i = 1, . . . ,m). (13)

From this simple analysis, we can conclude that it is enough to take the marginal (single-
label) distribution P(Yi |x) into account in order to solve the problem.2 At least this is
true on the population level, assuming that the hypothesis space is unconstrained. An even
stronger result has been obtained in multivariate regression, where one usually minimizes
the squared-error label-wise:

L2
(
y,h(x)

) = 1

m

m∑

i=1

(
yi − hi(x)

)2
. (14)

In this case, the components of the risk minimizing vector h∗
2(x) take the form

h2i
(x) = E(Yi |x) (i = 1, . . . ,m). (15)

A classical result states that linear models obtained by ordinary least squares are the same,
regardless of whether the outputs are treated jointly or independently of each other. This
remains true even when the inverse of the covariance matrix is involved in the squared-
error loss (Hastie et al. 2007, Chap. 3.2.4). Fortunately, as will be seen later on, there are
nevertheless possibilities to improve predictive performance. First, however, let us discuss
some other loss functions that fall into this scenario.

In general, any loss function for binary classification can be used in MLC, by averaging
the losses over the labels:

LM = 1

m

m∑

i=1

L̄i

(
(yi1, yi2, . . . , yin), (ŷi1, ŷi2, . . . , ŷin)

)
(16)

L̄i is a loss function that evaluates the predictions for the i-th label on the test set (yij

indicates the presence of the i-th label in the j -th example, and ŷij is the prediction of this
value). Obviously, L̄i may correspond to the average misclassification or squared-error loss
over the examples, leading eventually to the same results as for (12) and (14), respectively.

2Please note that we use the term “marginal distribution” with two different meanings, namely for P(Y)

(marginalization over the joint distribution P(X,Y)) and for P(Yi |x) (marginalization over P(Y|x)).
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Note, however, that the loss (16) is more general in the sense that it does not assume L̄i

to decompose linearly into a sum of losses on individual examples. Thus, it also covers
measures such as AUC and F-measure.

Let us also mention that (16) is usually referred to as the macro-average as the perfor-
mance is averaged over single labels, thus attributing equal weights to the labels. In contrast,
the micro-average, also commonly used in MLC, gives equal weights to all classifications
as it is computed over all predictions simultaneously, for example, by first summing contin-
gency matrices for all labels and then computing the performance over the resulting global
contingency matrix (only one matrix). However, this kind of averaging does not fall into any
of the views considered in this paper. In the next subsection, we discuss, in turn, losses that
are decomposable over single instances.

Our discussion so far implies that the single label prediction problem can be solved on
the basis of the marginal distributions P(Yi |x) alone. Hence, with a proper choice of base
classifiers and parameters for estimating the marginal probabilities, there is in principle no
need for modeling conditional dependence between the labels. This does not exclude the
possibility of first modeling the conditional joint distribution (so, conditional dependencies
as well) and then perform a proper marginalization procedure. We discuss such an approach
in Sect. 4.3. Here in turn, we take a closer look at another possibility that relies on exploiting
marginal dependence.

As mentioned in the previous section, marginal dependence is often caused by similar-
ity between the structural parts of the model. Consider an extreme situation in which two
models share the same structural part h(x) (a similar example is given in Hastie et al. 2007,
Chap. 3.7) in the context of multivariate regression):

Yl = h(X) + εl(X),

Yk = h(X) + εk(X).

Remark that Example 3 represents such a situation when α = 0. In this case, the training
examples for Yk and Yl can be pooled into a single dataset of double size, thereby decreasing
the variance in estimating the parameters of h. The same can of course also be done in cases
where the structural parts are only approximately identical. Then, however, a bias will be
introduced, and a gain can only be achieved if this negative effect will be dominated by the
positive effect, namely the reduction in variance.

In Sect. 6, we will discuss some existing MLC algorithms that improve the performance
measured in terms of label-wise decomposable loss functions by exploiting the similarities
between the structural parts of the models. Here, let us only add that similarity between
structural parts can also be seen as a specific type of background knowledge of the form
hl(x) = f (hk(x)), i.e., knowledge about a functional dependence between the deterministic
parts of the models for individual labels. Given a label-wise decomposable loss function, an
improvement over BR can also be achieved by using any sort of prior knowledge about the
marginal dependence between the labels.

4.2 Minimization of multi-label loss functions

In the framework of MLC, one can consider a multitude of loss functions. We have already
discussed the group of losses that are decomposable over single labels, i.e., losses that can
be represented as an average over labels. Here, we discuss loss functions that are not decom-
posable over single labels, but decomposable over single instances. Particularly, we focus
on rank loss, F-measure loss, Jaccard distance, and subset 0/1 loss. We start our discussion
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with the rank loss by showing that this loss function is still closely related to single label
predictions. Later, we will discuss the subset 0/1 loss, which is in turn closely related to the
estimation of the joint probability distribution. The two remaining loss functions, F-measure
loss and Jaccard distance, are more difficult to analyze, and there is no easy way to train a
classifier minimizing them.

Let us assume that the true labels constitute a ranking in which all relevant labels (i.e.,
those with yi = 1) ideally precede all irrelevant ones (yi = 0), and h is a ranking function
representing a degree of label relevance sorted in a decreasing order. The rank loss simply
counts the number of label pairs that disagree in these two rankings:

Lr

(
y,h(x)

) =
∑

(i,j):yi>yj

([[
hi(x) < hj (x)

]] + 1

2

[[
hi(x) = hj (x)

]])
. (17)

Since this loss function is neither convex nor differentiable, a common approach is to min-
imize a convex surrogate in which the boolean predicate is substituted by the hinge (like
in SVM) or exponential (like in boosting) function. Nevertheless, to minimize (17), it is
enough to sort the labels by their probability of relevance. Formally, we can show the fol-
lowing result (the proof is given in the Appendix).

Theorem 1 A ranking function that sorts the labels according to their probability of rele-
vance, i.e., using the scoring function h(·) with

hi(x) = P(Yi = 1|x), (18)

minimizes the expected rank loss (17).

As one of the most important consequences of the above result we note that, according
to (18), a risk-minimizing prediction for the rank loss can be obtained from the marginal
distributions P(Yi |x) (i = 1, . . . ,m) alone. Thus, just like in the case of Hamming loss, it is
in principle not necessary to know the joint label distribution P(Y|x) on Y , which means that
risk-minimizing predictions can be made without any knowledge about the conditional de-
pendency between labels. In other words, this result suggests that instead of minimizing the
rank loss directly, one can simply use any approach for single label prediction that properly
estimates the marginal probabilities.

In passing, we note that there is also a normalized variant of the rank loss, in which the
number of mistakes is divided by the maximum number of possible mistakes on y, i.e., by
the number of summands in (17); this number is given by r(m − r)/2, with r = ∑m

i=1 yi

the number of relevant labels. Without going into detail, we mention that the above result
cannot be extended to the normalized version of the rank loss. That is, knowing the marginal
distributions P(Yi |x) is not enough to produce a risk minimizer in this case.

The next multi-label loss function we analyze is the subset 0/1 loss, which generalizes
the well-known 0/1 loss from the conventional to the multi-label setting:

Ls

(
y,h(x)

) = [[
y 	= h(x)

]]
. (19)

Admittedly, this loss function may appear overly stringent, especially in the case of many
labels. Moreover, since making a mistake on a single label is punished as hardly as a mistake
on all labels, it does not discriminate well between “almost correct” and “completely wrong”
predictions. Still, as will be seen next, this measure is obviously interesting with regard to
label dependence.
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As for any other 0/1 loss, the risk-minimizing prediction for (19) is simply given by the
mode of the distribution:

h∗
s (x) = arg max

y∈Y
P(y|x). (20)

In contrast to the result for the rank loss, (20) shows that the entire distribution of Y given X,
or at least enough knowledge to identify the mode of this distribution, is needed to minimize
the subset 0/1 loss. In other words, the derivation of a risk-minimizing prediction requires
the modeling of the joint distribution (at least to some extent), and hence the modeling of
conditional dependence between labels.

Finally, let us have a look at losses based on the F-measure and the Jaccard distance
between sets. In the previous subsection, we already mentioned the F-measure loss, but
we computed it for each label independently. In contrast, the instance-wise decomposable
version is defined over all labels simultaneously:3

LF

(
y,h(x)

) = 1 − 2
∑m

i=1 yihi(x)∑m

i=1 yi + ∑m

i=1 hi(x)
, (21)

where we assume that hi(x) ∈ {0,1}. This measure can also be defined as the harmonic mean
of precision and recall computed for a single instance.

The Jaccard distance is quite similar to the F-measure loss, but it is originally defined by
set operators as one minus the ratio of intersection and union:

LJ

(
y,h(x)

) = 1 − |{i | yi = 1 ∧ hi = 1, i = 1, . . . ,m}|
|{i | yi = 1 ∨ hi = 1, i = 1, . . . ,m}| . (22)

Thanks to some simple transformations, it can also be written as follows:

LJ

(
y,h(x)

) = 1 −
∑m

i=1 yihi(x)∑m

i=1 yi + ∑m

i=1 hi(x) − ∑m

i=1 yihi(x)
. (23)

It is an open question whether or not a closed-form solution for the risk minimizers of
these loss functions exists. Moreover, the minimization of them is not straightforward. In
a recent paper, we show that the F-measure loss can be minimized in an efficient manner
using m2 +1 parameters of the conditional joint distribution over labels (Dembczyński et al.
2012). For the Jaccard index, one commonly believes that exact optimization is much harder
(Chierichetti et al. 2010).

4.3 Conditional joint distribution estimation

The last view on MLC problems discussed in this paper concerns the estimation of the
joint probability distribution P(Y|X). Estimating this distribution can be useful for several
reasons. For example, we have shown that the joint mode is the risk-minimizer of the subset
0/1 loss, and one way to obtain this value is through modeling the joint distribution. More
generally, if the joint distribution is known, a risk-minimizing prediction can be derived for
any loss function L(·) in an explicit way:

h∗(x) = arg min
y

EY|xL(Y,y).

3Note that the denominator is 0 if yi = hi(x) = 0 for all i = 1, . . . ,m. In this case, the loss is 0 by definition.
The same remark applies to the Jaccard distance.
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This also applies for loss functions for which a solution can be solely obtained from marginal
probabilities. In some applications modeling the joint distribution may result in using sim-
pler classifiers, potentially leading to a lower cost and a better performance compared to
directly estimating marginal probabilities by means of more complex classifiers.

Nevertheless, the estimation of the joint probability is a difficult task. In general one has
to estimate 2m values for a given x, namely the probability degrees P(y|x) for all y ∈ Y . In
order to solve this problem efficiently, all methods for probability estimation can in principle
be used. This includes parametric approaches based on Gaussian distributions or exponential
families, reducing the problem to the estimation of a small number of parameters (Joe 2000).
It also includes graphical models such as Bayesian networks (Jordan 1998), which factorize
a high-dimensional distribution into the product of several lower-dimensional distributions.
For example, departing from the product rule of probability (7), one can try to simplify a
joint distribution by exploiting label independence whenever possible, ending up with (6),
in the extreme case of conditional independence.

As another useful tool for modeling a joint distribution, which appears to be especially
interesting in the context of MLC, we mention so-called copulas. Copulas are functions
with certain well-defined properties that characterize the dependence of random variables by
establishing a link between marginal cumulative and joint cumulative distribution functions.
Although the early work on copulas dates back to the 50s of the last century, these functions
have received increasing attention in statistics and several applied disciplines in the last
years. The main result given by Sklar (1959) states that for an m-dimensional distribution
function F with marginal distribution functions F1,F2, . . . ,Fm, there exists an m-copula
C : [0,1]m → [0,1] such that

F(z) = C
(
F1(z1), . . . ,Fm(zm)

)

for all z in R
m. An m-copula can be interpreted as the joint cumulative density function of a

set of m random variables defined on the interval [0,1].
To the best of our knowledge, copulas have not been used in MLC so far, although they

suggest a natural two-step procedure for estimating joint conditional distributions:

– First, obtain estimates of the conditional marginal distributions for every label separately.
This step could be considered as a probabilistic binary relevance approach.

– Subsequently, estimate a copula on top of the marginal distributions to obtain the condi-
tional joint distribution.

Such a procedure is common practice in statistics, usually not for predictive purposes, but
mainly to gain deeper insight into the dependence between different labels (Joe 2000).
Notwithstanding the potential merits of such approaches in a purely predictive MLC set-
ting, two important limitations of existing work should be observed. First, these approaches
are highly parametric; typically the parameters of Gaussian copulas are estimated. Second,
the existence of one global copula is assumed, irrespective of x.

5 Theoretical insights into multi-label classification

In many MLC papers, a new learning algorithm is introduced without clearly stating the
problem to be solved. Then, the algorithm is empirically tested with respect to a multitude
of performance measures, but without precise information about which of these measures the
algorithm actually intends to optimize. This may implicitly give the misleading impression
that the same method can be optimal for several loss functions at the same time.
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In this section, we provide theoretical evidence for the claim that our distinction between
MLC problems, as proposed in the previous section, is indeed important. A classifier sup-
posed to be good for solving one of those problems may perform poorly for another prob-
lem. In order to facilitate the analysis, we restrict ourselves to two loss functions, namely
the Hamming and the subset 0/1 loss. The first one is representative of the single label sce-
nario, while the second one is a typical multi-label loss function whose minimization calls
for an estimation of the joint distribution. Our analysis proceeds from the simplifying as-
sumption of an unconstrained hypothesis space, which allows us to consider the conditional
distribution for a given x. As such, this theoretical analysis will differ from the experimen-
tal analysis reported in Sect. 7, where parametric hypothesis spaces are considered. Despite
this conceptual difference, our theoretical and experimental results will be highly consistent.
They both support the main claims of this paper concerning loss minimization and its rela-
tionship with label dependence. While the theoretical analysis mainly provides evidence on
the population level, the empirical study also investigates the effect of estimation.

The main result of this section will show that, in general, the Hamming loss minimizer
and the subset 0/1 loss minimizer will differ significantly. That is, the Hamming loss mini-
mizer may be poor in terms of the subset 0/1 loss and vice versa. In some (not necessarily
unrealistic) situations, however, the Hamming and subset 0/1 loss minimizers coincide, an
observation that may explain some misleading results in recent MLC papers. The following
proposition reveals two such situations.

Proposition 2 The Hamming loss and subset 0/1 have the same risk minimizer, i.e., h∗
H (x) =

h∗
s (x), if one of the following conditions holds:

(1) Labels Y1, . . . , Ym are conditionally independent, i.e., P(Y|x) = ∏m

i=1 P(Yi |x).
(2) The probability of the mode of the joint probability is greater than or equal to 0.5, i.e.,

P(h∗
s (x)|x) ≥ 0.5.

Proof

(1) Since the joint probability of any combination of y is given by the product of marginal
probabilities, the highest value of this product is given by the highest values of the
marginal probabilities. Thus, the joint mode is composed of the marginal modes.

(2) If P(h∗
s (x)|x) ≥ 0.5, then P(h∗

si
(x)|x) ≥ 0.5, i = 1, . . . ,m, and from this it follows that

h∗
si
(x) = h∗

Hi
(x).

�

As a simple corollary of this proposition, we have the following.

Corollary 1 In the separable case (i.e., the joint conditional distribution is deterministic,
P(Y|x) = [[Y = y]], where y is a binary vector of size m), the risk minimizers of the Ham-
ming loss and subset 0/1 coincide.

Proof If P(Y|x) = [[Y = y]], then P(Y|x) = ∏m

i=1 P(Yi |x). In this case, we also have
P(h∗

s (x)|x) ≥ 0.5. Thus, the result follows from both (1) and (2) in Proposition 2. �

Moreover, one can claim that the two loss functions are related to each other because of
the following simple bounds (the proof is given in the Appendix).
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Proposition 3 For all distributions of Y given x, and for all models h, the expectation of the
subset 0/1 loss can be bounded in terms of the expectation of the Hamming loss as follows:

1

m
EY

[
Ls

(
Y,h(x)

)] ≤ EY
[
LH

(
Y,h(x)

)] ≤ EY
[
Ls

(
Y,h(x)

)]
.

However, the next result shows that using a classifier tailored for the wrong loss function
may yield a high discrepancy in performance. We define the regret of a classifier h with
respect to a loss function Lz as follows:

rLz (h) = RLz(h) − RLz

(
h∗

z

)
, (24)

where R is the risk given by (1), and h∗
z is the Bayes-optimal classifier with respect to the

loss function Lz.
In the following, we consider the regret with respect to the Hamming loss, given by

rH (h) = EXYLH

(
Y,h(X)

) − EXYLH

(
Y,h∗

H (X)
)
,

and the subset 0/1 loss, given by

rs(h) = EXYLs

(
Y,h(X)

) − EXYLs

(
Y,h∗

s (X)
)
.

Since both loss functions are decomposable with respect to individual instances, we analyze
the expectation over Y for a given x. The first result concerns the highest value of the regret
in terms of the subset 0/1 loss for h∗

H (X), the optimal strategy for the Hamming loss (the
proof is given in the Appendix).

Proposition 4 The following upper bound holds:

EYLs

(
Y,h∗

H (x)
) − EYLs

(
Y,h∗

s (x)
)
< 0.5.

Moreover, this bound is tight, i.e.,

sup
P

(
EYLs

(
Y,h∗

H (x)
) − EYLs

(
Y,h∗

s (x)
)) = 0.5,

where the supremum is taken over all probability distributions on Y .

The second result concerns the highest value of the regret in terms of the Hamming loss
for h∗

s (X), the optimal strategy for the subset 0/1 loss (the proof is given in the Appendix).

Proposition 5 The following upper bound holds for m > 3:

EYLH

(
Y,h∗

s (x)
) − EYLH

(
Y,h∗

H (x)
)
<

m − 2

m + 2
.

Moreover, this bound is tight, i.e.

sup
P

(
EYLH

(
Y,h∗

s (x)
) − EYLH

(
Y,h∗

H (x)
)) = m − 2

m + 2
,

where the supremum is taken over all probability distributions on Y .

As we can see, the worst case regret is high for both loss functions, suggesting that a
single classifier will not be able to perform equally well in terms of both functions. Instead,
a classifier specifically tailored for the Hamming (subset 0/1) loss will indeed perform much
better for this loss than a classifier trained to minimize the subset 0/1 (Hamming) loss.
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6 MLC algorithms for exploiting label dependence

Recently, a number of learning algorithms for MLC have been proposed in the literature,
mostly with the goal to improve predictive performance (in comparison to binary relevance
learning), but sometimes also having other objectives in mind (e.g., reduction of time com-
plexity (Hsu et al. 2009)). To achieve their goals, the algorithms typically seek to exploit de-
pendencies between the labels. However, as mentioned before, concrete information about
the type of dependency tackled or the loss function to be minimized is rarely given. In many
cases, this is a cause of confusion and ill-designed experimental studies, in which inappro-
priate algorithms are used as baselines.

Tsoumakas and Katakis (2007) distinguish two categories of MLC algorithms, namely
problem transformation methods (reduction) and algorithm adaptation methods (adapta-
tion). Here, we focus on algorithms from the first group, mainly because they are simple
and widely used in empirical studies. Thus, a proper interpretation of these algorithms is
strongly desired.

We discuss reduction algorithms in light of our three views on MLC problems. We will
start with a short description of the BR approach. Then, we will present algorithms being
tailored for single label predictions by exploiting the similarities between structural parts of
the models. Next, we will discuss algorithms taking into account conditional label depen-
dence, and hence being tailored for other multi-label loss functions, like the subset 0/1 loss.
Some of these algorithms are also able to estimate the joint distribution. To summarize the
discussion on these algorithms we present their main properties in a table. Let us, however,
underline that this description concerns the basic settings of these algorithms given in the
original papers. It may happen that one can extend their functionality by alternating their
setup. At the end of this section, we give a short review of adaptation algorithms, but their
detailed description is beyond the scope of this paper. We also shortly describe algorithms
devoted for multi-label ranking problems.

6.1 Binary relevance

As we mentioned before, BR is the simplest approach to multi-label classification. It reduces
the problem to binary classification, by training a separate binary classifier hi(·) for each
label λi . Learning is performed independently for each label, ignoring all other labels.

Obviously, BR does not take label dependence into account, neither conditional nor
marginal. Indeed, as suggested by our theoretical results, BR is, in general, not able to yield
risk minimizing predictions for losses like subset 0/1, but it is well-tailored for Hamming
loss minimization or, more generally, every loss whose risk minimizer can be expressed
solely in terms of marginal distributions P(Yi |x) (i = 1, . . . ,m). As confirmed by several ex-
perimental studies, this approach might be sufficient for getting good results in such cases.
However, exploiting marginal dependencies may still be beneficial, especially for small-
sized problems.

6.2 Single label predictions

There are several methods that exploit similarities between the structural parts of label mod-
els. The general scheme of these approaches can be expressed as follows:

y = b
(
h(x),x

)
, (25)
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where h(x) is the binary relevance learner, and b(·) is an additional classifier that shrinks or
regularizes the solution of BR. One can also consider a slightly modified scheme:

b−1(y,x) = h(x). (26)

In this case, the output space (possibly along with the feature space) is first transformed,
and the binary relevance classifiers (or rather regressors, since the domain of the trans-
formed outputs is usually a set of real numbers) are then trained on the new output variables
b−1(y,x). Finally, to obtain a prediction of the original variables, the inverse transform has
to be performed, usually along with a kind of shrinkage/regularization.4

Stacking. Methods like Stacking (Godbole and Sarawagi 2004; Cheng and Hüllermeier
2009) directly follow the first scheme (25). They replace the original predictions, obtained
by learning every label separately, by correcting them in light of information about the pre-
dictions of the other labels. This transformation of the initial prediction should be interpreted
as a regularization procedure. Another possible interpretation is a feature expansion. This
method can easily be used with any kind of binary classifier. It is not clear, in general,
whether the meta-classifier b should be trained on the BR predictions h(x) alone or use the
original features x as additional inputs. Another question concerns the type of information
provided by the BR predictions. One can use binary predictions, but also values of scoring
functions or probabilities, if such outputs are delivered by the classifier.

Multivariate regression. Several methods introduced for multivariate regression, like
C&W (Breiman and Friedman 1997), reduced-rank regression (RRR) (Izenman 1975), and
FICYREG (an der Merwe and Zidek 1980), can be seen as a realization of the scheme (25).
According to Breiman and Friedman (1997), these methods have the same generic form:

y = (
T−1GT

)
Ax,

where T is the matrix of sample canonical co-ordinates, the solution of the canonical corre-
lation analysis (CCA), and the diagonal matrix G contains the shrinkage factors for scaling
the solutions of ordinary linear regression A.

These methods can also be represented by the second scheme (26). First, y is transformed
to the canonical co-ordinate system y′ = Ty. Then, separate linear regression is performed
to obtain estimates ỹ′ = (ỹ ′

1, ỹ
′
2, . . . , ỹ

′
n). These estimates are further shrunk by the factor gii

obtaining ŷ′ = Gỹ′. Finally, the prediction is transformed back to the original co-ordinate
output space ŷ = T−1ŷ′.

Kernel dependency estimation. The above references rather originate from the statistics
domain, but similar approaches have also been introduced in machine learning, like kernel
dependency estimation (KDE) (Weston et al. 2002) and multi-output regularized feature
projection (MORP) (Yu et al. 2006). We focus here on the former method. It consists of a
three-step procedure. The first step conducts a kernel principal component analysis of the
label space for deriving non-linear combinations of the labels or for predicting structured
outputs. Subsequently, the transformed labels (i.e., the principal components) are used in a
simple multivariate regression method that does not have to care about label dependencies,
knowing that the transformed labels are uncorrelated. In the last step, the predicted labels
of test data are transformed back to the original label space. Since Kernel PCA is used, this

4Methods of type (26) can also be used in order to reduce computational costs. By transforming the output
space to a new space of lower dimension, we end up with solving a fewer number of core problems.
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transformation is not straightforward, and the so-called pre-image problem has to be solved.
Label-based regularization can be included in this approach as well, simply by using only
the first r < m principal components in steps two and three, similar to regularization based
on feature selection in methods like principal component regression (Hastie et al. 2007).
The main difference between KDE and multivariate regression methods described above is
the use of kernel PCA instead of CCA. Simplified KDE approaches based on PCA have
been studied for multi-label classification in Tai and Lin (2010). Here, the main goal was to
reduce the computational costs by using only the most important principal components.

Compressive sensing. The idea behind compressive sensing used for MLC (Hsu et al.
2009) is quite different, but the resulting method shares a lot of similarities with the algo-
rithms described above. The method assumes that the label sets can be compressed and we
can learn to predict the compressed labels instead. From this point of view, we can mainly
improve the time complexity, since we solve a lower number of core problems. The com-
pression of the label sets is possible only if the vectors y are sparse. This method follows
scheme (26) to some extent. The main difference is the interpretation of the matrix T. Here,
we obtain y′ = Ty by using a random matrix from an appropriate distribution (such as Gaus-
sian, Bernoulli, or Hadamard) whose number of rows is much smaller than the length of y.
This results in a new multivariate regression problem with a lower number of outputs. The
prediction for a novel x relies on computing the output of the regression problem ŷ′, and then
on obtaining a sparse vector ŷ such that Tŷ′ is closest to ŷ′ solving an optimization problem,
similarly as in KDE. In other words, there is no simple decoding from the compressed to the
original label space, as it was the case for multivariate regression methods.

6.3 Estimation of joint distribution and minimization of multi-label loss functions

Here, we describe some methods that seek to estimate the joint distribution P(Y|x). As
explained in Sect. 4.3, knowledge about the joint distribution (or an estimation thereof)
allows for an explicit derivation of the risk minimizer of any loss function. However, we
also mentioned the high complexity of this approach.

Label Powerset (LP). This approach reduces the MLC problem to multi-class classifica-
tion, considering each label subset L ∈ L as a distinct meta-class (Tsoumakas and Katakis
2007; Tsoumakas and Vlahavas 2007). The number of these meta-classes may become as
large as |L| = 2m, although it is often reduced considerably by ignoring label combinations
that never occur in the training data. Nevertheless, the large number of classes produced by
this reduction is generally seen as the most important drawback of LP.

Since prediction of the most probable meta-class is equivalent to prediction of the mode
of the joint label distribution, LP is tailored for the subset 0/1 loss. In the literature, however,
it is often claimed to be the right approach to MLC in general, as it obviously takes the label
dependence into account. This claim is arguably incorrect and does not discern between the
two types of dependence, conditional and unconditional. In fact, LP takes the conditional
dependence into account and usually fails for loss functions like Hamming.

Let us notice that LP can easily be extended to any other loss function, provided the un-
derlying multi-class classifier f(·) does not only provide a class prediction but a reasonable
estimate of the probability of all meta-classes (label combinations), i.e., f (x) ≈ P(Y|x).
From this point of view, LP can be seen as a method for estimating the conditional joint
distribution. Practically, however, the large number of meta-classes makes probability esti-
mation an extremely difficult problem. In this regard, we also mention that most implemen-
tations of LP essentially ignore label combinations that are not presented in the training set
or, stated differently, tend to underestimate (set to 0) their probabilities.
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Several extensions of LP have been proposed in order to overcome its computational
burden. The RAKEL algorithm (Tsoumakas and Vlahavas 2007) is an ensemble method
that consists of several LP classifiers defined on randomly drawn subsets of labels. This
method is parametrized by a number of base classifiers and the size of label subsets. A global
prediction is obtained by combining the predictions of the ensemble members on the label
subsets. Essentially, this is done by counting, for each label, how many times it is included in
a predicted label subset. Despite its intuitive appeal and competitive performance, RAKEL
is still not well understood from a theoretical point of view. For example, it is not clear what
loss function it intends to minimize.

Probabilistic Classifier Chains (PCC). The number of meta-classes produced in LP is
exponential in the number of labels, which is clearly problematic from a classification point
of view. One possibility to circumvent this problem is to predict label combinations in a
stepwise manner, label by label, as suggested by the product rule of probability (7):

P(Y|x) = P(Y1|x)

m∏

i=2

P(Yi |Y1, . . . , Yi−1,x). (27)

More specifically, to estimate the joint distribution of labels, one possibility is to learn m

functions gi(·) on augmented input spaces X ×{0,1}i−1, respectively, taking y1, . . . , yi−1 as
additional attributes:

gi : X × {0,1}i−1 → [0,1],
(x, y1, . . . , yi−1) �→ P(yi = 1 |x, y1, . . . , yi−1).

Here, we assume that the function gi(·) can be interpreted as a probabilistic classifier whose
prediction is the probability that yi = 1, or at least a reasonable approximation thereof. This
approach (Dembczyński et al. 2010a) is referred to as probabilistic classifier chains, or PCC
for short. As it essentially comes down to training m binary classifiers (in augmented feature
spaces), this approach is manageable from a learning point of view, both conceptually and
computationally.

Much more problematic, however, is doing inference from the given joint distribution. In
fact, exact inference will again come down to using (27) in order to produce a probability
degree for each label combination, and hence cause an exponential complexity. Since this
approach is infeasible in general, approximate methods may have to be used. For example,
a simple greedy approximation of the joint mode is obtained by successively choosing the
most probable label according to each of the classifiers’ predictions. This approach, referred
to as classifier chains (CC), has been introduced in Read et al. (2009), albeit without a
probabilistic interpretation. Alternatively, one can exploit (27) to sample from it. Then, one
can compute a response for a given loss function based on this sample. Such an approach
has been used for the F-measure in Dembczyński et al. (2012).

Theoretically, the result of the product rule does not depend on the order of the variables.
Practically, however, two different classifier chains will produce different results, simply
because they involve different classifiers learned on different training sets. To reduce the in-
fluence of the label order, Read et al. (2009) propose to average the multi-label predictions
of CC over a (randomly chosen) set of permutations. Thus, the labels λ1, . . . , λm are first
re-ordered by a permutation π of {1, . . . ,m}, which moves the label λi from position i to
position π(i), and CC is then applied as usual. This extension is called the ensembled clas-
sifier chain (ECC). In ECC, a prediction is made by averaging over several CC predictions.
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Table 1 Summarization of the properties of the most popular reduction algorithms for multi-label classifi-
cation problems

Method Marginal dependence Conditional dependence Loss function

BR no no Hamming lossa and rank lossb

Stacking yes no Hamming lossa and rank lossb

C&W, RRR, FICYREG yes no squared error loss

KDE yes no kernel-based loss functionsc

Compressive sensing yesd no squared error loss, Hamming loss

LP no yes subset 0/1 loss, any losse

RAKEL no yes not explicitly defined

PCC no yes any losse

CC no yes subset 0/1 loss

ECC no yes not explicitly defined

aother label-wise decomposable losses as well

bthrough ordering of marginal probabilities
cneeds to define a kernel and solve a pre-image problem

dby compression
ewith a proper inference method

However, like in the case of RAKEL, it is rather unclear what this approach actually tends
to estimate, and what loss function it seeks to minimize.

We summarize the main properties of the algorithms described so far in a tabular form.
Table 1 gives a simple comparison of the algorithms in terms of loss functions they minimize
and the way they model the label dependence.

6.4 Other approaches to MLC

For the sake of completeness, let us mention that the list of methods discussed so far is
not exhaustive. In fact, there are several other methods that are potentially interesting in the
context of MLC. This includes, for example, conditional random fields (CRF) (Lafferty et
al. 2001; Ghamrawi and McCallum 2005), a specific type of graphical model that allows
for representing relationships between labels and features in a quite convenient way. This
approach is designed for finding the joint mode, thus for minimizing the subset 0/1 loss. It
can also be used for estimating the joint probability of label combinations.

Instead of estimating the joint probability distribution, one can also try to minimize a
given loss function in a more direct way. Concretely, this can be accomplished within the
framework of structural support vector machines (SSVM) (Tsochantaridis et al. 2005); in-
deed, a multi-label prediction can be seen as a specific type of structured output. Finley and
Joachims (2008) and Hariharan et al. (2010) (M3L) tailored this algorithm explicitly to min-
imize the Hamming loss in MLC problems. Let us also notice that Pletscher et al. (2010)
introduced a generalization of SSVMs and CRFs that can be applied for optimizing a variety
of MLC loss functions. Yet another approach to direct loss minimization is the use of boost-
ing techniques. In Amit et al. (2007), so-called label covering loss functions are introduced
that include Hamming and the subset 0/1 losses as special cases. The authors also propose a
learning algorithm suitable for minimizing covering losses, called AdaBoost.LC.
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Finally, let us discuss shortly algorithms that have been designed for the problem of la-
bel ranking, i.e., MLC problems in which ranking-based performance measures, like the
rank loss (17), are of primary interest. One of the first algorithms of this type was BoosTex-
ter (Schapire and Singer 2000), being an adaptation of AdaBoost. This idea has been further
generalized to log-linear models by Dekel et al. (2004). Rank-SVM is an instantiation of
SVMs that can be applied for this type of problems (Elisseeff and Weston 2002). Rank-
ing by pairwise comparison (Hüllermeier et al. 2008; Fürnkranz et al. 2008) is a reduction
method that transform the MLC problem to a quadratic number of binary problems, one for
each pair of labels.

7 Experimental evidence

To corroborate our theoretical results by means of empirical evidence, this section presents
a number of experimental studies, using both synthetic and benchmark data. We constrained
the experiment to four reduction algorithms: BR, Stacking (SBR), CC, and LP. We test
these methods in terms of Hamming and subset 0/1 loss. First, we investigate the behavior
of these methods on synthetic datasets pointing to some important pitfalls often encountered
in experimental studies of MLC. Finally, we present some results on benchmark datasets
and discuss them in the light of these pitfalls.

We used an implementation of BR and LP from the MULAN package (Tsoumakas et al.
2010),5 and the original implementation of CC (Read et al. 2009) from the MEKA pack-
age.6 We implemented our own code for Stacking that was built upon the code of BR. In
the following experiments, we employed linear logistic regression (LR) as a base classifier
of the MLC methods, taking the implementation from WEKA (Witten and Frank 2005).7 In
some experiments, we also used a rule ensemble algorithm, called MLRules,8 which can be
treated as a non-linear version of logistic regression, as this method trains a linear combi-
nation of decision (classification) rules by maximizing the likelihood (Dembczyński et al.
2008). In SBR, we first trained the binary relevance based on LR or MLRules, and subse-
quently a second LR for every label, in which the predicted labels (in fact, probabilities) of
a given instance are used as additional features. In CC, the base classifier was trained for
each consecutive label using the precedent labels as additional inputs, and the prediction
was computed in a greedy way, as we adopted here the original version of this algorithm
(not the probabilistic one). We took the original order of the labels (in one experiment we
trained an ensemble of CCs and in this case we randomized the order of labels). In LP we
used the 1-vs-1 method to solve the multi-class problem.

For each binary problem being a result of the reduction algorithm, we applied an in-
ternal three-fold cross-validation on training data for tuning the regularization parameters
of the base learner. We chose for a given binary problem the model with the lowest mis-
classification error. For LR we used the following set of possible values of the regulariza-
tion parameter {1000,100,10,1,0.1,0.01,0.001}. For MLRules, we varied the pairs of the
number of rules and the shrinkage parameter. The possible values for the number of rules

5http://mulan.sourceforge.net.
6http://meka.sourceforge.net.
7http://www.cs.waikato.ac.nz/ml/weka.
8http://www.cs.put.poznan.pl/wkotlowski/software-mlrules.html.

http://mulan.sourceforge.net
http://meka.sourceforge.net
http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.put.poznan.pl/wkotlowski/software-mlrules.html
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are {5,10,20,50,100,200,500}. We associated the shrinkage parameter with the number
of rules by taking respectively the following values {1,1,1,0.5,0.2,0.2,0.1}.

According to this setting and our theoretical claims, BR and SBR should perform well
for the Hamming loss, while CC and LP are more appropriate for the subset 0/1 loss.

7.1 Synthetic data

All synthetic data are based on a simple toy model with up to m = 25 labels and linear de-
cision boundaries in a two-dimensional input space. The true underlying models are defined
as follows:

hi(x) =
{

1, if ai1x1 + ai2x2 ≥ 0,

0, otherwise,

with i = 1, . . . ,m. Values of x1 and x2 were generated according to a unit disk point picking,
i.e., uniformly drawn from the circle of the radius equal to 1. Thus, we were not introducing
any additional artifact disturbing results of different linear models. Parameters ai = (ai1, ai2)

were drawn randomly in order to model different degree of similarity between the labels of
a given instance. The labels are similar when the parameters ai are similar, while they tend
to be dissimilar if the values are diverse. The parameters ai were controlled by value τ in
the following way:

ai1 = 1 − τr1, ai2 = τr2,

where r1, r2 ∼ U(0,1), i.e., were drawn randomly from the uniform distribution. Next, the
parameters were normalized to satisfy ||ai ||2 = 1. Below we will consider two situations:
τ = 0, which leads to identical structural parts and a strong marginal dependence; and τ =
1, which corresponds to similar but non-identical models and a lower degree of marginal
dependence.

In the different experiments, we generated data in several ways based on this simple
linear core problem. We varied the similarity of the structural parts of the models, the types
of errors and the dependence between them. The training and test sets respectively contained
50 and 10000 instances in all experiments. Each experiment was repeated 100 times to
obtain stable results and indications of the variance on the test performance. To this end,
error bars are shown in figures presented below. For visualization purposes these error bars
are plotted as three times the standard error. In addition, we always generated 10 different
models and for each such model we generated 10 different training sets and one test set.
Figure 2 shows data points for three exemplary labels with an independent error terms. In
the most experiments on synthetic data the linear classifier should be adequate for solving
the problems correctly.

7.2 Marginal independence

In this first experiment, the behavior of the MLC methods is analyzed for the case of
marginal independence. The problem consists of several linear models as defined above,
using τ = 1 (in fact, the value of τ does not play any role in this experiment). However,
to make the models independent, they were generated in a separate two-dimensional input
space:

hi(x) =
{

1, if ai1xi1 + ai2xi2 ≥ 0,

0, otherwise.
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Fig. 2 Exemplary linear models with data uniformly generated from a circle with radius 1. Training (top)
and test (down) sets for three labels are shown

Thus, in the case of m labels, the total number of features was then 2m. We tested the per-
formance of the methods varying the number of labels from 1 to 20. Additionally, each label
was disturbed by an independent random error term that follows a Bernoulli distribution:

εi(x) ∼
{

Ber(π), if ai1x1 + ai2x2 ≥ 0,

−Ber(π), otherwise,

in which the Bernoulli parameter π controlled the Bayes error rate for a given subproblem.
We chose π = 0.1, thereby leading to a Bayes error of π for the Hamming loss and a Bayes
error of 1 − (1 − π)m for the subset 0/1 loss. For large m, the subset 0/1 loss tends to 1.

The error curves are presented in Fig. 3. The lines for the Bayes error are also plotted.
Since the labels are completely independent, we can see that Stacking does not improve over
BR and instead even obtains worse results. CC performs similarly to SBR, but LP is not able
to get good results, probably because of the large number of different label combinations. We
can also observe that the error increases with the number of labels. This is probably caused
by an increasing number of irrelevant features for a given label. Let us notice, however, that
the Hamming loss and the subset 0/1 loss minimizers coincide for this data.

7.3 Conditional independence

In this experiment, we analyze the case of conditional independence. In this case, we used
only two features and each label was computed on them using different linear models, in
contrast to the previous experiment, where two separate features were constructed for each
label individually. The error terms for different labels were independently sampled. They
followed a Bernoulli distribution as before with π = 0.1. First, we generated data for τ = 0.
This results in models sharing the same structural part and differing in the stochastic part
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Fig. 3 Synthetic data modeling marginal independence; performance in terms of Hamming loss (left) and
subset 0/1 loss (right) with respect to the number of labels

only. Later, we changed τ to 1. In this case some of the labels can still share some similar-
ities. We can observe marginal dependence, but it is not so extreme as in the previous case.
Let us also notice that in this case the risk minimizers for both loss functions coincide.

Figure 4 summarizes the main results obtained in this experiment. One can see that Stack-
ing improves over BR in both cases, but the improvement is higher when the structural parts
of the model are identical. This supports our theoretical claim that, the higher the similar-
ity between models for different labels, the more prominent the effect of Stacking. For the
Hamming loss, one can observe that the performance of SBR slightly increases to some
point with the number of labels. This is caused by the fact that more models are averaged
(to some extent the sample size artificially increases). However, having enough labels, say
10, the model cannot improve more toward the Bayes-optimal classifier as it uses only 100
training examples. In other words, it can almost perfectly correct the labels for the training
examples, but the training set is too small to reduce the error down to the level of the Bayes-
optimal classifier. It is also worth to notice that the Hamming loss standard errors for BR
and SBR decrease with the number of labels. This is understandable as the performance is
averaged over more and more conditionally independent models.

Interestingly, CC is not better than BR in terms of Hamming loss in the case of the same
structural parts. Moreover, the standard errors of the Hamming loss are for CC indifferent to
the number of labels. For τ = 1, its performance decreases if the number of labels increases.
However, it performs much better with respect to subset 0/1 loss, and its behavior is similar
to BR in this case. These results can be interpreted as follows. For the same structural parts,
CC tends to build a model based on values of previous labels. In the prediction phase, how-
ever, once the error is made, it will be propagated along a chain. From this point of view, its
behavior is similar to using for all labels a base classifier that has been learned on the first
label. That is why standard errors do not change in the case of Hamming loss. This behavior
gives a small advantage for subset 0/1 loss, as the predictions become more homogeneous.
On the other hand, the training in the case of different structural parts (τ = 1) becomes more
difficult as there are not clear patterns among the previous labels. From this point of view,
the overall performance is influenced by the training and prediction phase, as in both phases
the algorithm makes mistakes.
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Fig. 4 Synthetic data modeling marginal dependence: labels sharing the same (left) and different (right)
structural parts; performance in terms of Hamming loss (top) and subset 0/1 loss (down) with respect to the
number of labels

More generally speaking, in addition to the potential existence of dependence between
the error terms in the underlying statistical process that generates the data, one can claim
as well that dependence can occur in the errors of the fitted models on test data. From this
perspective, BR and SBR can be interpreted as methods that do not induce additional de-
pendence between error terms, although the errors might be dependent due to the existence
of dependence in the underlying statistical process. CC on the other hand will typically in-
duce some further dependence, in addition to the dependence in the underlying statistical
process. So, even if we have conditional independence in the data, the outputs of CC tend
to result in dependent errors, simply because errors propagate through the chain. Obviously,
this does not have to be at all a bottleneck in minimizing the subset 0/1 loss, but it can
have a big impact on minimizing the Hamming loss, even if the true labels are conditionally
independent.

LP seems to break down completely when the number of labels increases. Since the
errors are independently generated for each label, the training sets contain a lot of different
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label combinations, resulting in a large number of meta-classes for LP. For small training
datasets, the majority of these meta-classes will not even occur in the training data.

7.4 Conditional dependence

A similar setup is used for the third experiment, but now the labels are conditionally depen-
dent on each other. To this end, the error terms again followed a Bernoulli distribution as
described above, yet they were fully dependent:

ε1(x) = · · · = εm(x).

Thus, contrary to the previous experiment, one cannot claim here that the sample size artifi-
cially increases if the structural parts are similar. Furthermore, the Bayes error rate does not
differ anymore for the Hamming loss and the subset 0/1 loss. For both loss functions, it cor-
responds to π , which is again set to 0.1. We again have a situation in which risk minimizers
for the Hamming loss and the subset 0/1 loss coincide. Since for τ = 0 all labels would be
identical, we use only the setup with τ = 1.

Figure 5 summarizes the main results of this experiment. First of all, one can observe a
clear difference in estimating the Hamming loss and the subset 0/1 loss. Notwithstanding
that both loss functions give rise to an equal Bayes error rate, still the Hamming loss is
much easier to estimate than the subset 0/1-loss; the performance on test data is much closer
to the Bayes error rate for Hamming loss. Thus, subset 0/1 loss remains rather difficult to
minimize. Furthermore, SBR performs the best, an effect that could be attributed to the
presence of marginal dependence, especially because it occurs for the Hamming and the
subset 0/1 loss. Although the error terms are identical for different labels, we claim that in
this experiment still the performance of an MLC algorithm can be boosted by exploiting
marginal label dependence. Let us also notice that the standard errors for BR and SBR do
not decrease as much as in the previous experiment.

The behavior of CC is quite similar as in the previous experiment with independent errors
on different structural parts. Apart from the dependence of errors, it seems that the structural
part of the model influences the performance in a greater degree, and the algorithm is not
able to learn accurately. In addition, one can also observe that LP performs much better
in comparison to previous settings. The main reason is that the number of different label
combinations is much lower than before. Nevertheless, LP still behaves worse than binary
relevance.

7.5 Joint mode 	= marginal modes

A more extreme form of conditional dependence is investigated in the fourth experiment. We
again consider a very similar setup as in the previous two experiments, but now the errors
are distributed in such a way that the Hamming loss minimizer does not correspond to the
0/1 subset loss minimizer. To this end, the joint posterior probability for a given x is defined
as follows:

y P(y | x)

baa . . . a 1/m
aba . . . a 1/m
. . . 1/m
a . . . aab 1/m
other labels 0
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Fig. 5 Synthetic data modeling conditional dependence: performance in terms of Hamming loss (left) and
subset 0/1 loss (right) with respect to number of labels

where ak = 1 when an object x is located on the right side of the line in our two-dimensional
linear classification problem. Conversely, bk represents an error, it is defined as 1 − ak for
all k ∈ {1, . . . ,m}. So, for every label vector, we allowed exactly one error, with a randomly
chosen position, resulting in the following constraint:

m∑

k=1

∣∣εk(x)
∣∣ = 1, ∀x.

Remark that the Bayes error rate of such a distribution corresponds to 1/m for the Hamming
loss and 1 − 1/m for the subset 0/1 loss. Datasets following such a distribution can be easily
generated, by sampling first without noise, and subsequently, by shifting at random one of
the m labels in every label vector. One might expect that only substantial differences in
performance will be observed for a small number of labels. Therefore, we only investigate
the cases m = 2, . . . ,10.

In this case, the Bayes error rate for the Hamming loss decreases with the number of la-
bels, while for subset 0/1 loss it increases. From the plots given in Fig. 6, we see that there is
no single algorithm that can perform optimally for both loss functions simultaneously. From
the bottom plot we can see that classifiers create a Pareto front, meaning that a trade-off can
be observed between optimizing different loss functions from a multi-objective optimization
perspective.

SBR and BR perform the best for the Hamming loss, with the former yielding a slight
advantage. For the subset 0/1 loss, LP now becomes the best, thereby supporting our the-
oretical claim that BR is estimating marginal modes, while LP is seeking the mode of the
joint conditional distribution. Moreover, an interesting behavior of CC can be observed; for
a small number of labels, it properly estimates the joint mode. However, its performance
decreases with an increase in the number of labels. It follows that one has to use a proper
base classifier to capture the conditional dependence. A linear classifier is too weak in this
case. Moreover, CC employs a greedy approximation of the joint mode, which might also
have a negative impact on the performance.

Using these synthetic data, we also try to investigate the behavior of RAKEL and ECC.
To this end, we used RAKEL with 10 LPs operating on random subsets of labels of size
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Fig. 6 Synthetic data modeling joint mode 	= marginal modes; performance in terms of Hamming loss (top
left), subset 0/1 loss (top right), and both (bottom) with respect to number of labels

k ∈ {2, . . . ,6}. The results for the problem with 8 labels are presented in Fig. 7. One can see
a nice Pareto front of the algorithms, suggesting that RAKEL realizes a kind of trade-off
between Hamming and subset 0-1 loss minimization. This is plausible, since this algorithm
essentially reduces to BR for the extreme case k = 1 and to LP for k = m (with m the number
of labels). In addition, Fig. 7 visualizes the behavior of ECC with the number of iterations
set to 5, 10, 15, and 20. Here we used synthetic data with 5 labels. One cannot observe a
trend as obvious as in LP, but it seems that increasing the number of iterations moves the
predictions from the joint mode into marginal modes.

7.6 XOR problem

In the literature, LP is often shown to outperform BR even in terms of Hamming loss. Given
our results so far, this is somewhat surprising and calls for an explanation. We argue that
results of that kind should be considered with caution, mainly because a meta learning tech-
nique (such as BR and LP) must always be considered in conjunction with the underlying
base learner. In fact, differences in performance should not only be attributed to the meta
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Fig. 7 Behavior of RAKEL (left) and ECC (right)

but also to the base learner. In particular, since BR uses binary and LP multi-class classi-
fication, they are typically applied with different base learners, and hence are not directly
comparable.

We illustrate this by means of an example in which we generated data as before, but using
XOR instead of linear models. More specifically, we first generated a linear model, and then
converted it to an XOR problem by combining it with the corresponding orthogonal linear
model. Each label depends on the same two features, but the parameters were generated
independently for each label with τ = 1. For simplicity, we did not use any kind of error.

Obviously, using a linear base learner, BR or SBR is not able to solve this problem prop-
erly, whereas LP, using a multi-class extension of LR (based on a one-vs-one decomposition)
yields a good performance, for both loss functions. However, this multi-class extension is no
longer a truly linear classifier. Instead, several linear classifiers are wrapped in a decomposi-
tion and an aggregation procedure, yielding a more complex classifier that can produce non-
linear decision boundaries. And indeed, giving BR access to a more complex base learner,
like the rule ensemble MLRules, it is able to solve the problem as well; see results and the
scatter plot of data in Fig. 8.

7.7 Benchmark data

The second part of the experiment concerns four benchmark datasets: SCENE, YEAST, MED-
ICAL and EMOTIONS.9 We used the original training and test sets given by the data providers.
Thanks to that the results can be easily compared to future and already published studies.
Below we present short description of each dataset, and Table 2 summarizes the main prop-
erties of them.

SCENE is a semantic scene classification dataset proposed by Boutell et al. (2004), in
which a picture can be categorized into one or more classes. In this dataset, pictures can
have the following classes: beach, sunset, foliage, field, mountain, and urban. Features of
this dataset correspond to spatial color moments in the LUV space. Color as well as spatial
information have been shown to be fairly effective in distinguishing between certain types

9All the datasets have been taken from the MULAN repository http://mulan.sourceforge.net.

http://mulan.sourceforge.net
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Fig. 8 Synthetic data modeling an XOR problem: exemplary data generated for one of the labels (left) and
results of four classifiers in Hamming vs. subset 0/1 loss space (right)

of outdoor scenes: bright and warm colors at the top of a picture may correspond to a sunset,
while those at the bottom may correspond to a desert rock.

From the biological field, we have chosen the YEAST dataset (Elisseeff and Weston
2002), which is about predicting the functional classes of genes in the Yeast Saccharomyces
Cerevisiae. Each gene is described by the concatenation of microarray expression data and a
phylogenetic profile, and associated with a set of 14 functional classes. The dataset contains
2417 genes in total, and each gene is represented by a 103-dimensional feature vector.

The MEDICAL (Pestian et al. 2007) dataset has been used in Computational Medicine
Centers 2007 Medical Natural Language Processing Challenge.10 It is a medical-text dataset
that includes a brief free-text summary of patient symptom history and their prognosis, la-
beled with insurance codes. Each instance is represented with a bag-of-words of the symp-
tom history and is associated with a subset of 45 labels (i.e., possible prognoses).

The EMOTIONS data was created from a selection of songs from 233 musical albums
(Trohidis et al. 2008). From each song, a sequence of 30 seconds after the initial 30 seconds
was extracted. The resulting sound clips were stored and converted into wave files of 22050
Hz sampling rate, 16-bit per sample and mono. From each wave file, 72 features have been
extracted, falling into two categories: rhythmic and timbre. Then, in the emotion labeling
process, 6 main emotional clusters are retained corresponding to the Tellegen-Watson-Clark
model of mood: amazed-surprised, happy-pleased, relaxing-clam, quiet-still, sad-lonely and
angry-aggressive.

Figure 9 visualizes the performance of eight classifiers on these datasets. We used four
reduction methods for MLC: BR, SBR, PCC and LP along with LR and MLRules. The
performance is presented in the Hamming vs. subset 0/1 loss space. The results are also
summarized in Tables 3 and 4.

In general, the results confirm our theoretical claims. In the case of the YEAST and EMO-
TIONS datasets, we can observe a kind of Pareto front of the classifiers. This suggests a
strong conditional dependence between labels, resulting in different risk minimizers for

10http://computationalmedicine.org.

http://computationalmedicine.org
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Table 2 Basic statistics for the datasets, including training and test set sizes, number of features and labels,
and minimal, average, and maximal number of relevant labels

Dataset # train inst. # test inst. # attr. # lab. min ave. max

SCENE 1211 1196 294 6 1 1.062 3

YEAST 1500 917 103 14 1 4.228 11

MEDICAL 333 645 1449 45 1 1.255 3

EMOTIONS 391 202 72 6 1 1.813 3

Table 3 Hamming loss, standard error and the rank of the algorithms on benchmark datasets

Hamming loss SCENE YEAST MEDICAL EMOTIONS

BR 0.1013 ± 0.0033(7) 0.1981 ± 0.0046(1) 0.0150 ± 0.0006(6) 0.2071 ± 0.0109(3)

SBR 0.0980 ± 0.0036(6) 0.2002 ± 0.0045(3) 0.0145 ± 0.0007(4) 0.1955 ± 0.0110(1)

BR Rules 0.0909 ± 0.0032(4) 0.1995 ± 0.0046(2) 0.0123 ± 0.0007(2) 0.2203 ± 0.0116(5)

SBR Rules 0.0864 ± 0.0035(1) 0.2080 ± 0.0050(4) 0.0124 ± 0.0007(3) 0.1980 ± 0.0112(2)

CC 0.1342 ± 0.0046(8) 0.2137 ± 0.0052(8) 0.0146 ± 0.0007(5) 0.2244 ± 0.0122(6)

CC Rules 0.0884 ± 0.0036(3) 0.2121 ± 0.0050(6) 0.0119 ± 0.0007(1) 0.2327 ± 0.0131(8)

LP 0.0942 ± 0.0042(5) 0.2096 ± 0.0056(5) 0.0174 ± 0.0009(7) 0.2129 ± 0.0144(4)

LP Rules 0.0874 ± 0.0041(2) 0.2123 ± 0.0056(7) 0.0181 ± 0.0009(8) 0.2294 ± 0.0154(7)

Table 4 Subset 0/1 loss, standard error and the rank of the algorithms on benchmark datasets

subset 0/1 loss SCENE YEAST MEDICAL EMOTIONS

BR 0.4891 ± 0.0145(8) 0.8408 ± 0.0121(6) 0.5380 ± 0.0196(8) 0.7772 ± 0.0293(8)

SBR 0.4381 ± 0.0144(5) 0.8550 ± 0.0116(8) 0.5116 ± 0.0197(7) 0.7574 ± 0.0302(5)

BR Rules 0.4507 ± 0.0144(6) 0.8408 ± 0.0121(6) 0.4093 ± 0.0194(2) 0.7624 ± 0.0300(6)

SBR Rules 0.3880 ± 0.0141(4) 0.8277 ± 0.0125(5) 0.4248 ± 0.0195(3) 0.7426 ± 0.0308(3)

CC 0.4582 ± 0.0144(7) 0.7895 ± 0.0135(3) 0.5008 ± 0.0197(6) 0.7624 ± 0.0300(6)

CC Rules 0.3855 ± 0.0141(3) 0.8092 ± 0.0130(4) 0.3767 ± 0.0191(1) 0.7475 ± 0.0306(4)

LP 0.3152 ± 0.0134(2) 0.7514 ± 0.0143(1) 0.4434 ± 0.0196(4) 0.6535 ± 0.0335(1)

LP Rules 0.2943 ± 0.0132(1) 0.7557 ± 0.0142(2) 0.4527 ± 0.0196(5) 0.6634 ± 0.0333(2)

Hamming and subset 0/1 loss. In the case of the SCENE and MEDICAL datasets, it seems that
both risk minimizers coincide. The best algorithms perform equally good for both losses.

Moreover, one can also observe for the SCENE dataset that LP with a linear base classifier
outperforms linear BR in terms of Hamming loss, but the use of a non-linear classifier in
BR improves the results again over LP. As pointed out above, comparing LP and BR with
the same base learner is questionable and may lead to unwarranted conclusions. Similar to
the synthetic XOR experiment, performance gains of LP and CC might be primarily due to
a hypothesis space extension, especially because the methods with nonlinear base learners
perform well in general.
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Fig. 9 Results on benchmark datasets represented in Hamming loss vs subset 0/1 loss space: SCENE (top
left), YEAST (top right), MEDICAL (bottom left), EMOTIONS (bottom right)

8 Conclusions

In this paper, we have addressed a number of issues around one of the core topics in current
MLC research, namely the idea of improving predictive performance by exploiting label
dependence. In our opinion, this topic has not received enough attention so far, despite the
increasing interest in MLC in general. Indeed, as we have argued in this paper, empiri-
cal studies of MLC methods are often meaningless or even misleading without a careful
interpretation, which in turn requires a thorough understanding of underlying theoretical
conceptions.

In particular, by looking at the current literature, we noticed that papers proposing new
methods for MLC rarely give a precise definition of the type of dependence they have in
mind, despite stating the exploitation of label dependence as an explicit goal. Besides, the
type of loss function to be minimized, i.e., the concrete goal of the classifier, is often not
mentioned either. Instead, a new method is shown to be better than existing ones “on aver-
age”, evaluating on a number of different loss functions.
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Based on a distinction between two types of label dependence that seem to be important
in MLC, namely marginal and conditional dependence, we have established a close con-
nection between the type of dependence present in the data and the type of loss function
to be minimized. In this regard, we have also distinguished three classes of problem tasks
in MLC, namely the minimization of single-label loss functions, multi-label loss functions,
and the estimation of the joint conditional distribution.

On the basis of our theoretical results, in conjunction with several empirical studies using
both synthetic and benchmark data, we can draw a couple of conclusions:

– The type of loss function has a strong influence on whether or not, and perhaps to what
extent, an exploitation of label dependencies can be expected to yield a true benefit.

– Marginal label dependence can help in boosting the performance for single-label and
multi-label loss functions that have marginal conditional distributions as risk minimizers,
while conditional dependence plays a role for loss functions having a more complex risk
minimizer, such as the subset 0/1 loss, which requires estimating the mode of the joint
conditional distribution.

– Loss functions in MLC are quite diverse, and minimizing different losses will normally
require different estimators. Using the Hamming and subset 0/1 loss as concrete examples,
we have shown that a minimization of the former may cause a high regret for the latter
and vice versa.

We believe that these results have a number of important implications, not only from a
theoretical but also from a methodological and practical point of view. Perhaps most impor-
tantly, one cannot expect the same MLC method to be optimal for different types of losses at
the same time, and each new approach shown to outperform others across a wide and diverse
spectrum of different loss functions should be considered with reservation. Besides, more
efforts should be made in explaining the improvements that are achieved by an algorithm,
laying bare its underlying mechanisms, the type of label dependence it assumes, and the way
in which this dependence is exploited. Since experimental studies often contain a number
of side effects, relying on empirical results alone, without a careful analysis and reasonable
explanation, appears to be disputable.
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Appendix

Theorem 1 A ranking function that sorts the labels according to their probability of rele-
vance, i.e., using the scoring function h(·) with

hi(x) = P(Yi = 1|x), (28)

minimizes the expected rank loss (17).
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Proof The risk of a scoring vector f = f(x) can be written as

EY |XLr(Y, f) =
∑

y∈Y

P(y|x)Lr(y, f)

=
∑

y∈Y

P(y|x)
∑

yi>yj

(
[[fi < fj ]] + 1

2
[[fi = fj ]]

)
.

The two sums can be swapped, and doing so yields the expression

∑

1≤i,j≤m

∑

y∈Y

P(y|x)[[yi > yj ]]
(

[[fi < fj ]] + 1

2
[[fi = fj ]]

)

which in turn can be written as
∑

1≤i<j≤m

g(i, j) + g(j, i)

with

g(i, j) = P(yi > yj |x)

(
[[fi < fj ]] + 1

2
[[fi = fj ]]

)
.

For each pair of labels yi, yj , the sum g(i, j) + g(j, i) is obviously minimized by choosing
the scores fi, fj such that fi < fj whenever P(yi > yj |x) < P(yj > yi |x), fi = fj whenever
P(yi > yj |x) = P(yj > yi |x), and fi > fj whenever P(yi > yj |x) > P(yj > yi |x). Since

P(yi > yj |x) − P(yj > yi |x) = P(yi = 1|x) − P(yj = 1|x),

the minimizer can be expressed in terms of P(yi = 1|x) and P(yj = 1|x). Consequently,
the scores (28) minimize the sums g(i, j) + g(j, i) simultaneously for all label pairs and,
therefore, minimize risk. �

Proposition 3 For all distributions of Y given x, and for all models h, the expectation of the
subset 0/1 loss can be bounded in terms of the expectation of the Hamming loss as follows:

1

m
EY

[
Ls

(
Y,h(x)

)] ≤ EY
[
LH

(
Y,h(x)

)] ≤ EY
[
Ls

(
Y,h(x)

)]
.

Proof For a fixed x ∈ X , we can express the expected loss as follows:

EY
[
L

(
Y,h(x)

)] =
∑

y∈Y

P(y|x)L
(
y,h(x)

)

Suppose we can express an MLC loss in terms of an aggregation G : {0,1}m → [0,1] of the
standard zero-one losses L0/1 on individual labels (as used in conventional classification):

L
(
y,h(x)

) = G
(
L0/1

(
y1, h1(x)

)
, . . . ,L0/1

(
ym,hm(x)

))
.

Indeed, the subset 0/1 loss and the Hamming loss can be written, respectively, as

Gmax(a) = Gmax(a1, . . . , am) = max{a1, . . . , am},
Gmean(a) = Gmean(a1, . . . , am) = 1

m
(a1 + · · · + am).

This immediately leads to the above lower and upper bound for the Hamming loss. The
proposition then immediately follows from the fact that 1

m
Gmax(a) ≤ Gmean(a) ≤ Gmax(a)

for all a ∈ [0,1]m. �
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Proposition 4 The following upper bound holds:

EYLs

(
Y,h∗

H (x)
) − EYLs

(
Y,h∗

s (x)
)
< 0.5

Moreover, this bound is tight, i.e.,

sup
P

(
EYLs

(
Y,h∗

H (x)
) − EYLs

(
Y,h∗

s (x)
)) = 0.5,

where the supremum is taken over all probability distributions on Y .

Proof Since the risk of any classifier h is within the range [0,1], the maximal value of the
regret is 1. However, according to the second part of Proposition 2, both risk minimizers co-
incide if EYLs(Y,h∗

s (x)) ≤ 0.5. Consequently, the regret must be (strictly) smaller than 0.5.
To prove the tightness of the bound, we show that, for any δ ∈ (0, 1

6 ), there is a probability
distribution P that yields the regret 0.5 − 3δ. Define P as follows:

P(y|x) =
⎧
⎨

⎩

1
2 − δ, if y = h1,
1
2 − δ, if y = h̄1,

2δ, if y = 0m,

where h1 represents an m-dimensional vector of zeros, apart from a one at the first position,
and h̄1 corresponds to the negation of h1. Such a distribution can be constructed for all
m > 1. Obviously, then h∗

s (x) corresponds to h1 or h̄1 and h∗
H (x) becomes 0m. Finally, we

thus obtain

EYLs

(
Y,h∗

H (x)
) = 1 − 2δ

and

EYLs

(
Y,h∗

s (x)
) = 0.5 + δ,

which immediately proves the proposition. �

Proposition 5 The following upper bound holds for m > 3:

EYLH

(
Y,h∗

s (x)
) − EYLH

(
Y,h∗

H (x)
)
<

m − 2

m + 2
.

Moreover, this bound is tight, i.e.

sup
P

(
EYLH

(
Y,h∗

s (x)
) − EYLH

(
Y,h∗

H (x)
)) = m − 2

m + 2
,

where the supremum is taken over all probability distributions on Y .

Proof We first show that there is a distribution yielding regret arbitrarily close to the bound,
before proving the tightness. Let ai ∈ {0,1} and āi = 1 − ai . If am = (a1, a2, . . . , am) is
a {0,1}-vector of length m, then ām denotes the vector (ā1, ā2, . . . , ām). Furthermore, let
dH (a,b) denote the Hamming distance, given by

dH (a,b) = 1

m

m∑

i=1

|ai − bi |

for all a,b ∈ {0,1}m. Now, consider a joint probability distribution defined as follows:11

11We will suppress dependence on x in the notation, whenever it is clear from the context.
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P(y) =
⎧
⎨

⎩

1
m+2 + δ, if y = am,

1
m+2 − δ

m+1 , if dH (y, ām) ≤ 1,

0, otherwise,

where δ > 0. Hence, we obtain h∗
H = ām for small enough δ and

EYLH

(
Y,h∗

s (x)
) = 1 − P(yi = ai |x) = m

m + 2
− m

m + 1
δ,

EYLH

(
Y,h∗

H (x)
) = P(yi = ai |x) = 2

m + 2
+ m

m + 1
δ.

The difference is then given by

EYLH

(
Y,h∗

s (x)
) − EYLH

(
Y,h∗

H (x)
) = m − 2

m + 2
− δ

2m

m + 1
.

Since this holds for any δ > 0, the regret gets arbitrarily close to the bound.
Additionally, we show that the right-hand side of the inequality in the proposition is an

upper bound, which is more involved. To this end, we will show that maximizing the regret
over all probability distributions can be bounded by several linear programs, with optimal
values bounded by the right-hand side. Let us introduce

	Lmax
m = sup

P
	Lm(P) = sup

P

(
EYLH

(
Y,h∗

s (x)
) − EYLH

(
Y,h∗

H (x)
))

.

Let us first consider an arbitrary probability distribution. Without loss of generality, we
can permute labels in such a way that the zero vector 0m, containing m zeros, corresponds to
the mode. The Hamming loss of the subset 0/1 loss minimizer and Hamming loss minimizer
can then be expressed as:

EYLH

(
Y,h∗

s (x)
) =

m∑

k=1

∑

y∈{0,1}m

yk

m
P(y),

EYLH

(
Y,ht (x)

) =
m∑

k=1

∑

y∈{0,1}m

|yk − ht
k|

m
P(y),

where yi denotes the ith entry of the vector y and ht represents any multi-label classifier
consisting of t ones and m− t zeros. Again without loss of generality, we can further permute
indices in such a way that the Hamming loss minimizer is given by first t ones, followed by
m − t zeros, where 1 ≤ t ≤ m. As a consequence, we find

	Lm(P) =
t∑

k=1

∑

y∈{0,1}m

2yk − 1

m
P(y).

Furthermore, 	Lmax
m is upper bounded by the solution of the following optimization prob-

lem:

max
t∈{0,...,m},P

t∑

k=1

∑

y∈{0,1}m

2yk − 1

m
P(y)

subject to

⎧
⎪⎨

⎪⎩

∑
y∈{0,1}m P(y) = 1,

∀y ∈ {0,1}m \ 0m : P(y) ≤ P(0m),

∀y ∈ {0,1}m : 0 ≤ P(y) ≤ 1.

(29)

This is a mixed integer linear program with t the only integer variable. Its solution only acts
as an upper bound since we introduced two relaxations: the subset zero-one loss minimizer
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can now coincide with the Hamming loss minimizer and it consists of t ones followed by
m − t zeros. For t fixed, the optimization problem becomes a regular linear program. As a
consequence, let us first solve for P(y) and subsequently for t :

	Lmax
m ≤ max

t∈{0,...,m}
	Lmax

m,t = max
t∈{0,...,m}

max
P

t∑

k=1

∑

y∈{0,1}m

2yk − 1

m
P(y).

We show that for a given t the solution 	Lmax
m,t of the linear program is given by PA when

t ≥ 2m−t + 1 and by PB when t ≤ 2m−t + 1. These distributions are defined as follows:

PA(y) =
{ 1

1+(t+1)2m−t if y ∈ 
(t, t − 1) ∪ 
(t, t) ∪ {0m},
0 otherwise,

or

PB(y) =
{ 1

1+2m−t if y ∈ 
(t, t) ∪ {0m},
0 otherwise,

where the set 
(p,q) is defined as:


(p,q) =
{

y ∈ {0,1}m |
p∑

i=1

yi = q

}
.

For these probability distributions, the value of the objective function is respectively given
by:

	LA
m,t = − 1

1 + (t + 1)2m−t

t

m
+ 2m−t t

1 + (t + 1)2m−t

2(t − 1) − t

m
+ 2m−t

1 + (t + 1)2m−t

t

m

= ((t − 1)2m−t − 1)t

(1 + (t + 1)2m−t )m
,

	LB
m,t = − 1

1 + 2m−t

t

m
+ 2m−t

1 + 2m−t

t

m

= (2m−t − 1)t

(2m−t + 1)m
.

To show that one of these two probability distributions defines the maximum of the linear
program, we verify the Karush-Kuhn-Tucker conditions (Karush 1939; Kuhn and Tucker
1951) for a given value of t . If t is fixed, (29) can be simplified to the following standard
linear program form:

min
P

−
∑

y∈{0,1}m
ηt (y)P(y)

subject to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑
y∈{0,1}m P(y) − 1 = 0,

∀y ∈ {0,1}m \ 0m : P(y) − P(0m) ≤ 0,

∀y ∈ {0,1}m : −P(y) ≤ 0,

∀y ∈ {0,1}m : P(y) ≤ 1,

with

ηt (y) =
t∑

k=1

yk.

The primal Lagrangian can be defined as:
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Lp = −
∑

y∈{0,1}m
ηt (y)P(y) + ν

∑

y∈{0,1}m

(
P(y) − 1

) +
∑

y	=0m

λ2
y

(
P(y) − P(0m)

)

−
∑

y∈{0,1}m
λ0

yP(y) +
∑

y∈{0,1}m
λ1

yP(y),

with ν,λ0
y, λ

1
y and λ2

y Lagrange multipliers. The stationarity condition for optimality implies
that the gradient of the primal Lagrangian equals zero, leading to the following system of
linear equations:

−ηt (y) + ν + λ1
y − λ0

y + λ2
y = 0 ∀y 	= 0m, (30)

−ηt (y) + ν + λ1
y − λ0

y −
∑

y	=0m

λ2
y = 0 y = 0m. (31)

Other conditions that need to be satisfied are dual feasibility

∀y : λ0
y ≥ 0, (32)

∀y : λ1
y ≥ 0, (33)

∀y : λ2
y ≥ 0, (34)

and the complementary slackness conditions, which are different for PA(y) and PB(y). For
PA(y) they are given by:

∀y ∈ 
u
t ∪ {0m} : λ0

y = 0,

∀y : λ1
y = 0,

∀y /∈ 
u
t : λ2

y = 0,

where 
u
t = 
(t, t) ∪ 
(t, t − 1). Plugging the latter three conditions into (30) and (31)

yields

λ2
y = t − v, ∀y ∈ 
(t, t),

λ2
y = t − 1 − v, ∀y ∈ 
(t, t − 1),

λ0
y = −ηt (y) + v, ∀y /∈ 
u

t ∪ {0m},
v = 2m−t (t − v) + t2m−t (t − 1 − v).

Solving the last equation for v results in

v = 2m−t t2

1 + (t + 1)2m−t
.

Finally, we only need to verify the dual feasibility conditions: (32) and (33) are always
satisfied, (34) is satisfied as soon as

t ≥ 2m−t + 1. (35)

So, PA(y) delivers the optimum for all t and m that satisfy (35). In a very similar way, one
can show that PB(y) becomes optimal when

t ≤ 2m−t + 1. (36)

As a result, either PA(y) or PB(y) can be the optimum for a given t and m. They are both so-
lutions to the optimization problem for the specific case where the above inequality becomes
an equality. Remark that also other solutions exist only for this specific case.
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We observe that PA(y) yields for t = m the regret mentioned in the proposition. Hence,
we only need to show that this fraction is indeed the maximum value of the objective func-
tion for all values of t , if PA(y) and PB(y) are considered. Both 	LA

m,t and 	LB
m,t are upper

bounded by t/m, which is further upper bounded by

t

m
≤ m − 2

m + 2
,

for all t ∈ {1, . . . ,m − 4}. We complete the proof by verifying manually the difference in
the objective function value for the remaining values of t . This leads to the following bound
that needs to be satisfied for PA(y):

m − 2

m + 2
− 2m−t t2 − (2m−t + 1)t

(1 + (t + 1)2m−t )m
≥ 0.

As a result, one obtains for t ∈ {m − 3,m − 2,m − 1} respectively:

10m2 + 45m − 198 ≥ 0, (37)

2m2 + 22m − 52 ≥ 0, (38)

7m − 10 ≥ 0. (39)

The following bound needs to be satisfied for PB(y):

m − 2

m + 2
− (2m−t − 1)t

(2m−t + 1)m
≥ 0,

resulting in the following inequalities for t ∈ {m − 3,m − 2,m − 1,m} respectively:

2m2 − 11m + 42 ≥ 0, (40)

2m2 − 10m + 12 ≥ 0, (41)

2m2 − 7m + 2 ≥ 0, (42)

m ≥ 2. (43)

It turns out that all inequalities (37)–(43) are simultaneously satisfied for m > 3. �
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