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Abstract

Several machine learning methods allow for abstaining from uncertain predic-
tions. While being common for settings like conventional classification, absten-
tion has been studied much less in learning to rank. We address abstention for the
label ranking setting, allowing the learner to declare certain pairs of labels as being
incomparable and, thus, to predict partial instead of total orders. In our method,
such predictions are produced via thresholding the probabilities of pairwise pref-
erences between labels, as induced by a predicted probability distribution on the
set of all rankings. We formally analyze this approach for the Mallows and the
Plackett-Luce model, showing that it produces proper partial orders as predictions
and characterizing the expressiveness of the induced class of partial orders. These
theoretical results are complemented by experiments demonstrating the practical
usefulness of the approach.

1 Introduction

In machine learning, the notion of “abstention” commonly refers to the possibility of refusing a
prediction in cases of uncertainty. In classification with a reject option, for example, a classifier
may abstain from a class prediction if making no decision is considered less harmful than making an
unreliable and hence potentially false decision [7, 1]. The same idea could be used in the context of
ranking, too, where a reject option appears to be even more interesting than in classification. While
a conventional classifier has only two choices, namely to predict a class or to abstain, a ranker can
abstain to some degree: The order relation predicted can be more or less complete, ranging from a
total order to the empty relation in which all alternatives are declared incomparable.

Our focus is on so-called label ranking problems [16, 10], to be introduced more formally in Sec-
tion 2 below. Label ranking has a strong relationship with the standard setting of multi-class classi-
fication, but each instance is now associated with a complete ranking of all labels instead of a single
label. Typical examples, which also highlight the need for abstention, include the ranking of can-
didates for a given job and the ranking of products for a given customer. In such applications, it is
desirable to avoid the expression of unreliable or unwarranted preferences. Thus, if a ranker cannot
reliably decide whether a first label should precede a second one or the other way around, it should
abstain from this decision and instead declare these alternatives as being incomparable. Abstaining
in a consistent way, the relation thus produced should form a partial order [6].
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In Section 4, we propose and analyze a new approach for abstention in label ranking that builds
on existing work on partial orders in areas like decision theory, probability theory and discrete
mathematics. We predict partial orders by thresholding parameterized probability distributions on
rankings, using the Plackett-Luce and the Mallows model. Roughly speaking, this approach is able
to avoid certain inconsistencies of a previous approach to label ranking with abstention [6], to be
discussed in Section 3. By making stronger model assumptions, our approach simplifies the con-
struction of consistent partial order relations. In fact, it obeys a number of appealing theoretical
properties. Apart from assuring proper partial orders as predictions, it allows for an exact character-
ization of the expressivity of a class of thresholded probability distributions in terms of the number
of partial orders that can be produced. The proposal and formal analysis of this approach constitute
our main contributions.

Last but not least, as will be shown in Section 5, the theoretical advantages of our approach in
comparison with [6] are also reflected in practical improvements.

2 Label Ranking with Abstention

In the setting of label ranking, each instance x from an instance space X is associated with a total
order of a fixed set of class labels Y = {y1, . . . , yM}, that is, a complete, transitive, and antisym-
metric relation � on Y , where yi � yj indicates that yi precedes yj in the order. Since a ranking
can be considered as a special type of preference relation, we shall also say that yi � yj indicates a
preference for yi over yj (given the instance x).

Formally, a total order � can be identified with a permutation π of the set [M ] = {1, . . . ,M}, such
that π(i) is the position of yi in the order. We denote the class of permutations of [M ] (the symmetric
group of order M ) by Ω. Moreover, we identify � with the mapping (relation) R : Y2 −→ {0, 1}
such that R(i, j) = 1 if yi � yj and R(i, j) = 0 otherwise.

The goal in label ranking is to learn a “label ranker” in the form of an X −→ Ω mapping. As training
data, a label ranker uses a set of instances xn (n ∈ [N ]), together with preference information in the
form of pairwise comparisons yi � yj of some (but not necessarily all) labels in Y , suggesting that
instance xn prefers label yi to yj .

The prediction accuracy of a label ranker is assessed by comparing the true ranking π with the
prediction π̂, using a distance measure D on rankings. Among the most commonly used measures
is the Kendall distance, which is defined by the number of inversions, that is, pairs {i, j} ⊂ [M ]
such that sign(π(i) − π(j)) 6= sign(π̂(i) − π̂(j)). Besides, the sum of squared rank distances,∑M
i=1(π(i) − π̂(i))2, is often used as an alternative distance; it is closely connected to Spearman’s

rank correlation (Spearman’s rho), which is an affine transformation of this number to the interval
[−1,+1].

Motivated by the idea of a reject option in classification, Cheng et al. [6] introduced a variant of
the above setting in which the label ranker is allowed to partially abstain from a prediction. More
specifically, it is allowed to make predictions in the form of a partial order Q instead of a total order
R: If Q(i, j) = Q(j, i) = 0, the ranker abstains on the label pair (yi, yj) and instead declares these
labels as being incomparable. Abstaining in a consistent way, Q should still be antisymmetric and
transitive, hence a partial order relation. Note that a predictionQ can be associated with a confidence
set, i.e., a subset of Ω supposed to cover the true ranking π, namely the set of all linear extensions
of this partial order: C(Q) =

{
π ∈ Ω |Q(i, j) = 1⇒ (π(i) < π(j)) for all i, j ∈ [M ]

}
.

3 Previous Work

Despite a considerable amount of work on ranking in general and learning to rank in particular, the
literature on partial rankings is relatively sparse. Worth mentioning is work on a specific type of
partial orders, namely linear orders of unsorted or tied subsets (partitions, bucket orders) [13, 17].
However, apart from the restriction to this type of order relation, the problems addressed in these
works are quite different from our goals. The authors in [17] specifically address computational
aspects that arise when working with distributions on partially ranked data, while [13] seeks to
discover an underlying bucket order from pairwise precedence information between the items.
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More concretely, in the context of the label ranking problem, the aforementioned work [6] is the
only one so far that addresses the more general problem of learning to predict partial orders. This
method consists of two main steps and can be considered as a pairwise approach in the sense that,
as a point of departure for a prediction, a valued preference relation P : Y2 −→ [0, 1] is produced,
where P (i, j) is interpreted as a measure of support of the pairwise preference yi � yj . Support
is commonly interpreted in terms of probability, hence P is assumed to be reciprocal: P (i, j) =
1− P (j, i) for all i, j ∈ [M ].

Then, in a second step, a partial order Q is derived from P via thresholding:

Q(i, j) = JP (i, j) > qK =

{
1, if P (i, j) > q
0, otherwise , (1)

where 1/2 ≤ q < 1 is a threshold. Thus, the idea is to predict only those pairwise preferences that
are sufficiently likely, while abstaining on pairs (i, j) for which P (i, j) ≈ 1/2.

The first step of deriving the relation P is realized by means of an ensemble learning technique:
Training an ensemble of standard label rankers, each of which provides a prediction in the form of
a total order, P (i, j) is defined by the fraction of ensemble members voting for yi � yj . Other
possibilities are of course conceivable, and indeed, the only important point to notice here is that the
preference degrees P (i, j) are essentially independent of each other. Or, stated differently, they do
not guarantee any specific properties of the relation P except being reciprocal. In particular, P does
not necessarily obey any type of transitivity property.

For the relation Q derived from P via thresholding, this has two important consequences: First, if
the threshold q is not large enough, then Q may have cycles. Thus, not all thresholds in [1/2, 1) are
actually feasible. In particular, if q = 1/2 cannot be chosen, this also implies that the method may
not be able to predict a total order as a special case. Second, even if Q does not have cycles, it is not
guaranteed to be transitive.

To overcome these problems, the authors devise an algorithm (of complexity O(|Y|3)) that finds
the smallest feasible threshold qmin, namely the threshold that guarantees Q(i, j) = JP (i, j) > qK
to be cycle-free for each threshold q ∈ [qmin, 1). Then, since Q may still be non-transitive, it is
“repaired” in a second step by replacing it with its transitive closure [23].

4 Predicting Partial Orders based on Probabilistic Models

In order to tackle the problems of the approach in [6], our idea is to restrict the relation P in (1) so
as to exclude the possibility of cycles and intransitivity from the very beginning, thereby avoiding
the need for a post-reparation of a prediction. To this end, we take advantage of methods for label
ranking that produce (parameterized) probability distributions over Ω as predictions. Our main the-
oretical result is to show that thresholding pairwise preferences induced by such distributions, apart
from being semantically meaningful due to their clear probabilistic interpretation, yields preference
relations with the desired properties, that is, partial order relations Q.

4.1 Probabilistic Models

Different types of probability models for rank data have been studied in the statistical literature
[11, 20], including the Mallows model and the Plackett-Luce (PL) model as the most popular rep-
resentatives of the class of distance-based and stagewise models, respectively. Both models have
recently attracted attention in machine learning [14, 15, 22, 21, 18] and, in particular, have been
used in the context of label ranking.

A label ranking method that produces predictions expressed in terms of the Mallows model is pro-
posed in [5]. The standard Mallows model

P(π | θ, π0) =
exp(−θD(π, π0))

φ(θ)
(2)

is determined by two parameters: The ranking π0 ∈ Ω is the location parameter (mode, center
ranking) and θ ≥ 0 is a spread parameter. Moreover, D is a distance measure on rankings, and
φ = φ(θ) is a normalization factor that depends on the spread (but, provided the right-invariance
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of D, not on π0). Obviously, the Mallows model assigns the maximum probability to the center
ranking π0. The larger the distance D(π, π0), the smaller the probability of π becomes. The spread
parameter θ determines how quickly the probability decreases, i.e., how peaked the distribution is
around π0. For θ = 0, the uniform distribution is obtained, while for θ → ∞, the distribution
converges to the one-point distribution that assigns probability 1 to π0 and 0 to all other rankings.

Alternatively, the Plackett-Luce (PL) model was used in [4]. This model is specified by a parameter
vector v = (v1, v2, . . . , vM ) ∈ RM+ :

P(π |v) =

M∏
i=1

vπ−1(i)

vπ−1(i) + vπ−1(i+1) + . . .+ vπ−1(M)
(3)

It is a generalization of the well-known Bradley-Terry model for the pairwise comparison of alter-
natives, which specifies the probability that “a wins against b” in terms of P(a � b) = va

va+vb
.

Obviously, the larger va in comparison to vb, the higher the probability that a is chosen. Likewise,
the larger the parameter vi in (3) in comparison to the parameters vj , j 6= i, the higher the probability
that yi appears on a top rank.

4.2 Thresholded Relations are Partial Orders

Given a probability distribution P on the set of rankings Ω, the probability of a pairwise prefer-
ence yi � yj (and hence the corresponding entry in the preference relation P ) is obtained through
marginalization:

P (i, j) = P(yi � yj) =
∑

π∈E(i,j)

P(π) , (4)

where E(i, j) denotes the set of linear extensions of the incomplete ranking yi � yj , i.e., the set
of all rankings π ∈ Ω with π(i) < π(j). We start by stating a necessary and sufficient condition
on P (i, j) for the threshold relation (1) to result in a (strict) partial order, i.e., an antisymmetric,
irreflexive and transitive relation.

Lemma 1. Let P be a reciprocal relation and let Q be given by (1). Then Q defines a strict
partial order relation for all q ∈ [1/2, 1) if and only if P satisfies partial stochastic transitivity,
i.e., P (i, j) > 1/2 and P (j, k) > 1/2 implies P (i, k) ≥ min(P (i, j), P (j, k)) for each triple
(i, j, k) ∈ [M ]3.

This lemma was first proven by Fishburn [12], together with a number of other characterizations of
subclasses of strict partial orders by means of transitivity properties on P (i, j). For example, replac-
ing partial stochastic transitivity by interval stochastic transitivity (now a condition on quadruples
instead of triplets) leads to a characterization of interval orders, a subclass of strict partial orders; a
partial order Q on [M ]2 is called an interval order if each i ∈ [M ] can be associated with an interval
(li, ui) ⊂ R such that Q(i, j) = 1⇔ ui ≤ lj .
Our main theoretical results below state that thresholding (4) yields a strict partial order relation Q,
both for the PL and the Mallows model. Thus, we can guarantee that a strict partial order relation
can be predicted by simple thresholding, and without the need for any further reparation. Moreover,
the whole spectrum of threshold parameters q ∈ [1/2, 1) can be used.

Theorem 1. Let P in (4) be the PL model (3). Moreover, let Q be given by the threshold relation
(1). Then Q defines a strict partial order relation for all q ∈ [1/2, 1).

Theorem 2. Let P in (4) be the Mallows model (2), with a distance D having the so-called trans-
position property. Moreover, let Q be given by the threshold relation (1). Then Q defines a strict
partial order relation for all q ∈ [1/2, 1).

Theorem 1 directly follows from the strong stochastic transitivity of the PL model [19]. The proof
of Theorem 2 is slightly more complicated and given below. Moreover, the result for Mallows is less
general in the sense that D must obey the transposition property. Actually, however, this property is
not very restrictive and indeed satisfied by most of the commonly used distance measures, including
the Kendall distance (see, e.g., [9]). In the following, we always assume that the distance D in the
Mallows model (2) satisfies this property.
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Definition 1. A distanceD on Ω is said to have the transposition property, if the following holds: Let
π and π′ be rankings and let (i, j) be an inversion (i.e., i < j and (π(i)−π(j))(π′(i)−π′(j)) < 0).
Let π′′ ∈ Ω be constructed from π′ by swapping yi and yj , that is, π′′(i) = π′(j), π′′(j) = π′(i)
and π′′(m) = π′(m) for all m ∈ [M ] \ {i, j}. Then, D(π, π′′) ≤ D(π, π′).
Lemma 2. If yi precedes yj in the center ranking π0 in (2), then P(yi � yj) ≥ 1/2. Moreover, if
P(yi � yj) > q ≥ 1/2, then yi precedes yj in the center ranking π0.

Proof. For every ranking π ∈ Ω, let b(π) = π if yi precedes yj in π; otherwise, b(π) is defined by
swapping yi and yj in π. Obviously, b(·) defines a bijection between E(i, j) and E(j, i). Moreover,
sinceD has the transposition property,D(b(π), π0) ≤ D(π, π0) for all π ∈ Ω. Therefore, according
to the Mallows model, P(b(π)) ≥ P(π), and hence

P(yi � yj) =
∑

π∈E(i,j)

P(π) ≥
∑

π∈E(i,j)

P(b−1(π)) =
∑

π∈E(j,i)

P(π) = P(yj � yi)

Since, moreover, P(yi � yj) = 1 − P(yj � yi), it follows that P(yi � yj) ≥ 1/2. The second
part immediately follows from the first one by way of contradiction: If yj would precede yi, then
P(yj � yi) ≥ 1/2, and therefore P(yi � yj) = 1−P(yj � yi) ≤ 1/2 ≤ q.

Lemma 3. If yi precedes yj and yj precedes yk in the center ranking π0 in (2), then P(yi � yk) ≥
max (P(yi � yj),P(yj � yk)).

Proof. We show that P(yi � yk) ≥ P(yi � yj). The second inequality P(yi � yk) ≥ P(yj � yk)
is shown analogously. Let E(i, j, k) denote the set of linear extensions of yi � yj � yk,
i.e., the set of rankings π ∈ Ω in which yi precedes yj and yj precedes yk. Now, for every
π ∈ E(k, j, i), define b(π) by first swapping yk and yj and then yk and yi in π. Obviously, b(·)
defines a bijection between E(k, j, i) and E(j, i, k). Moreover, due to the transposition property,
D(b(π), π0) ≤ D(π, π0), and therefore P(b(π)) ≥ P(π) under the Mallows model. Consequently,
since E(i, j) = E(i, j, k)∪E(i, k, j)∪E(k, i, j) and E(i, k) = E(i, k, j)∪E(i, j, k)∪E(j, i, k),
it follows that P(yi � yk) − P(yi � yj) =

∑
π∈E(i,k)\E(i,j) P(π) =

∑
π∈E(j,i,k) P(π) −∑

π∈E(k,j,i) P(π) =
∑
π∈E(k,j,i) P(b(π))−P(π) ≥ 0.

Lemmas 2 and 3 immediately imply the following lemma.
Lemma 4. The relation P derived via P (i, j) = P(yi � yj) from the Mallows model satisfies the
following property (closely related to strong stochastic transitivity): If (P (i, j) > q and P (j, k) > q,
then P (i, k) ≥ max(P (i, j), P (j, k)), for all q ≥ 1/2 and all i, j, k ∈ [M ].

Proof of Theorem 2. Since P(yi � yj) = 1 −P(yj � yi), it obviously follows that Q(yi, yj) = 1
implies Q(yj , yi) = 0. Moreover, Lemma 4 implies that Q is transitive. Consequently, Q defines a
proper partial order relation.

The above statements guarantee that a strict partial order relation can be predicted by simple thresh-
olding, and without the need for any further reparation. Moreover, the whole spectrum of threshold
parameters q ∈ [1/2, 1) can be used. As an aside, we mention that strict partial orders can also be
produced by thresholding other probabilistic preference learning models. All pairwise preference
models based on utility scores satisfy strong stochastic transitivity. This includes traditional sta-
tistical models such as the Thurstone Case 5 model [25] and the Bradley-Terry model [3], as well
as modern learning models such as [8, 2]. These models are usually not applied in label ranking
settings, however.

4.3 Expressivity of the Model Classes

So far, we have shown that predictions produced by thresholding probability distributions on rank-
ings are proper partial orders. Roughly speaking, this is accomplished by restricting P in (1) to
specific valued preference relations (namely marginals (4) of the Mallows or the PL model), in con-
trast to the approach of [6], where P can be any (reciprocal) relation. From a learning point of
view, one may wonder to what extent this restriction limits the expressivity of the underlying model
class. This expressivity is naturally defined in terms of the number of different partial orders (up to
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isomorphism) that can be represented in the form of a threshold relation (1). Interestingly, we can
show that, in this sense, the approach based on PL is much more expressive than the one based on
the Mallows model.
Theorem 3. Let QM denote the set of different partial orders (up to isomorphism) that can be
represented as a threshold relation Q defined by (1), where P is derived according to (4) from the
Mallows model (2) with D the Kendall distance. Then |QM | = M .

Proof. By the right invariance of D, different choices of π0 lead to the same set of isomorphism
classes QM . Hence we may assume that π0 is the identity. By Theorem 6.3 in [20] the (M ×M)-
matrix with entries P (i, j) is a Toeplitz matrix, i.e., P (i, j) = P (i+ 1, j+ 1) for all i, j ∈ [M − 1],
with entries strictly increasing along rows, i.e., P (i, j) < P (i, j + 1) for 1 ≤ i < j < M . Thus, by
Theorem 2, thresholding leads to M different partial orders.

More specifically, the partial orders in QM have a very simple structure that is purely rank-
dependent: The first structure is the total order π = π0. The second structure is obtained by
removing all preferences between all direct neighbors, i.e., labels yi and yj with adjacent ranks
(|π(i) − π(j)| = 1). The third structure is obtained from the second one by removing all prefer-
ences between 2-neighbors, i.e., labels yi and yj with (|π(i)− π(j)| = 2), and so forth.

The cardinality of QM increases for distance measures D other than Kendall (like Spearman’s rho
or footrule), mainly since in general the matrix with entries P (i, j) is no longer Toeplitz. However,
for some measures, including the two just mentioned, the matrix will still be symmetric with respect
to the antidiagonal, i.e., P (i, j) = P (M + 1− i,M + 1− j) for j > i) and have entries increasing
along rows. While the exact counting ofQM appears to be very difficult in such cases, an argument
similar to the one used in the proof of the next result shows that |QM | is bounded by the number of
symmetric Dyck paths and hence |QM | ≤

(
M
bM2 c

)
(see Ch. 7 [24]). It is a simple consequence of

Theorem 4 below, showing that exponentially more orders can be produced based on the PL model.
Lemma 5. For fixed q ∈ (1/2, 1) and a set A of subsets of [M ], the following are equivalent:

(i) The setA is the set of maximal antichains of a partial order induced by (4) on [M ] for some
v1 > · · · > vM > 0.

(ii) The set A is a set of mutually incomparable intervals that cover [M ].

Proof. The fact that (i) implies (ii) is a simple calculation. Now assume (ii). For any interval
{a, a + 1, . . . , b} ∈ A we must have vc

vc+vd
≤ q for any c, d ∈ {a, a + 1, . . . , b} for which c < d.

From va ≥ vc > vd ≥ vb it follows that
va

va + vb
=

1

1 + vb
va

≥ 1

1 + vd
vc

=
vc

vc + vd
.

Thus, it suffices to show that there are real numbers v1 > · · · > vn > 0 such that va
va+vb

≤ q for any
{a, a + 1, . . . , b} ∈ A and vc

vc+vd
> q for any c < d which are not contained in an antichain from

A. We proceed by induction on M .

The induction base M = 1 is trivial. Assume M ≥ 2. Since all elements of A are intervals and
any two intervals are mutually incomparable, it follows that M is contained in exactly one set from
A—possibly the singleton {M}. Let A′ be the set A without the unique interval {a, a+ 1, . . . ,M}
containing M . Then A′ is a set of intervals that cover a proper subset [M ′] of [M ] and fulfill the
assumptions of (ii) for [M ′]. Hence by induction there is a choice of real numbers v1 > · · · >
vM ′ > 0 such that the set of maximal antichains of the order on [M ′] induced by (4) is exactly A′.
We consider two cases: (i) a = M ′ + 1. Then, by the considerations above, we need to choose
numbers vM ′ > va > va+1 > · · · > vM > 0 such that va

va+vM
≤ q and vM′

vM′+va
> q. The

latter implies d
vd+vc

= 1
1+ vc

vd

≥ vM′
vM′+va

> q for d ≤ M ′ > a = M ′ + 1 ≥ d ≥ M . But

those are easily checked to exist. (ii) a ≤ M ′. Since M ′ is contained in at least one set from A′

and since this set is not contained in {a, a + 1, . . . ,M}, it follows that q ≥ va−1

va−1+vM′
> va

va+vM′
.

In particular (1 − q)va < qvM ′ . Now choose vM ′+1 > vM ′+2 > · · · > vM > 0 such that
qvM ′ > qvM ′+1 > qvM > va(1− q). Note that here q > 1/2 is essential. Then one checks that all
desired inequalities are fulfilled.
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Theorem 4. Let QPL denote the set of different partial orders (up to isomorphism) that can be
represented as a threshold relation Q defined by (1), where P is derived according to (4) from the
PL model (3). For any given threshold q ∈ [1/2, 1), the cardinality of this set is given by the M th

Catalan number:

|QPL| =
1

M + 1

(
2M

M

)
Sketch of Proof. Without loss of generality, we can assume the parameters of the PL model to satisfy

v1 > · · · > vM > 0 . (5)

Consider the (M×M)-matrix with entries P (i, j). By (5), the main diagonal of this matrix is strictly
increasing along rows and columns. From the set {(i, j) | 0 ≤ i ≤M + 1, 0 ≤ i−1 ≤ j ≤M}, we
remove those (i, j), 1 ≤ i < j ≤ M , for which P (i, j) is above the given threshold. As a picture
in the plane, this yields a shape whose upper right boundary can be identified with a Dyck path—a
path on integer points consisting of 2M moves (1, 0), (0, 1) from position (1, 0) to (M + 1,M) and
staying weakly above the (i + 1, i)-diagonal. It is immediate that each path uniquely determines
its partial order. Moreover, it is well-known that these Dyck paths are counted by the M th Catalan
number.

In order to verify that any Dyck path is induced by a suitable choice of parameters, one establishes a
bijection between Dyck paths from (1, 0) to (M+1,M) and maximal sets of mutually incomparable
intervals (in the natural order) in [M ]. To this end, consider for a Dyck path a peak at position (i, j),
i.e., a point on the path where a (1, 0) move is followed by a (0, 1) move. Then we must have j ≥ i,
and we identify this peak with the interval {i, i + 1, . . . , j}. It is a simple yet tedious task to check
that assigning to a Dyck path the set of intervals associated to its peaks is indeed a bijection to the
set of maximal sets of mutually incomparable intervals in [M ]. Again, it is easy to verify that the set
of intervals associated to a Dyck path is the set of maximal antichains of the partial order determined
by the Dyck path. Now, the assertion follows from Lemma 5.

Again, using Lemma 5, one checks that (5) implies that partial orders induced by (4) in the PL
model have a unique labeling up to poset automorphism. Hence our count is a count of isomorphism
classes.

We note that, from the above proof, it follows that the partial orders in QPL are the so called
semiorders. We refer the reader to Ch. 8 §2 [26] for more details. Indeed, the first part of the proof
of Theorem 4 resembles the proof of Ch. 8 (2.11) [26]. Moreover, we remark that QM is not only
smaller in size than QPL, but the former is indeed strictly included in the latter: QM ⊂ QPL. This
can easily be seen by defining the weights vi of the PL model as vi = 2M−i (i ∈ [M ]), in which
case the matrix with entries P (i, j) = 2j−i

1+2j−i is Toeplitz.

Finally, given that we have been able to derive explicit (combinatorial) expressions for |QM | and
|QPL|, it might be interesting to note that, somewhat surprisingly at first sight, no such expression
exists for the total number of partial orders on M elements.

5 Experiments

We complement our theoretical results by an empirical study, in which we compare the different
approaches on the SUSHI data set,1 a standard benchmark for preference learning. Based on a
food-chain survey, this data set contains complete rankings of 10 types of sushi provided by 5000
customers, where each customer is characterized by 11 numeric features.

Our evaluation is done by measuring the tradeoff between correctness and completeness achieved
by varying the threshold q in (1). More concretely, we use the measures that were proposed in [6]:
correctness is measured by the gamma rank correlation between the true ranking and the predicted
partial order (with values in [−1,+1]), and completeness is defined by one minus the fraction of
pairwise comparisons on which the model abstains. Obviously, the two criteria are conflicting:
increasing completeness typically comes along with reducing correctness and vice versa, at least if
the learner is effective in the sense of abstaining from those decisions that are indeed most uncertain.

1Available online at http://www.kamishima.net/sushi
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Figure 1: Tradeoff between completeness and correctness for the SUSHI label ranking data set:
Existing pairwise method (direct) versus the probabilistic approach based on the PL model and
Mallows model with Spearman’s rho (MS) and Kendall (MK) as distance measure. The figure on
the right corresponds to the original data set with rankings of size 10, while and the figure on the left
shows results for rankings of size 6.

We compare the original method of [6] with our new proposal, calling the former direct, because
the pairwise preference degrees on which we threshold are estimated directly, and the latter derived,
because these degrees are derived from probability distributions on Ω. As a label ranker, we used
the instance-based approach of [5] with a neighborhood size of 50. We conducted a 10-fold cross
validation and averaged the completeness/correctness curves over all test instances. Due to compu-
tational reasons, we restricted the experiments with the Mallows model to a reduced data set with
only six labels, namely the first six of the ten sushis. (The aforementioned label ranker is based
on an instance-wise maximum likelihood estimation of the probability distribution P on Ω; in the
case of the Mallows model, this involves the estimation of the center ranking π0, which is done by
searching the discrete space Ω, that is, a space of size |M !|.)
The experimental results are summarized in Figure 1. The main conclusion that can be drawn from
these results is that, as expected, our probabilistic approach does indeed achieve a better tradeoff
between completeness and correctness than the original one, especially in the sense that it spans
a wider range of values for the former. Indeed, with the direct approach, it is not possible to go
beyond a completeness of around 0.4, whereas our probabilistic methods always allow for predicting
complete rankings (i.e., to achieve a completeness of 1). Besides, we observe that the tradeoff curves
of our new methods are even lifted toward a higher level of correctness. Among the probabilistic
models, the PL model performs particularly well, although the differences are rather small.

Similar results are obtained on a number of other benchmark data sets for label ranking. These
results can be found in the supplementary material.

6 Summary and Conclusions

The idea of producing predictions in the form of a partial order by thresholding a (valued) pairwise
preference relation is meaningful in the sense that a learner abstains on the most unreliable com-
parisons. While this idea has first been realized in [6] in an ad-hoc manner, we put it on a firm
mathematical grounding that guarantees consistency and, via variation of the threshold, allows for
exploiting the whole spectrum between a complete ranking and an empty relation.

Both variants of our probabilistic approach, the one based on the Mallows and the other one based
the PL model, are theoretically sound, semantically meaningful, and show strong performance in
first experimental studies. The PL model may appear especially appealing due to its expressivity,
and is also advantageous from a computational perspective.

An interesting question to be addressed in future work concerns the possibility of improving this
model further, namely by increasing its expressivity while still assuring consistency. In fact, the
transitivity properties guaranteed by PL seem to be stronger than what is necessarily needed. In this
regard, we plan to study models based on the notion of Luce-decomposability [20], which include
PL as a special case.
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