United States Patent

US010929392B1

(12) ao) Patent No.: US 10,929,392 B1
Cheng 45) Date of Patent: Feb. 23, 2021
(54) ARTIFICIAL INTELLIGENCE SYSTEM FOR 2014/0244317 A1* 82014 Robertsoccevvies GO06Q 40/08
AUTOMATED GENERATION OF REALISTIC 2015/0178623 Al* 6/2015 Bal GO6N 29052/;‘
alant ...
QUESTION AND ANSWER PAIRS 706/48
2015/0193429 Al* 7/2015 Bohra GOGF 16/3329
(71) Applicant: Amazon Technologies, Inc., Seattle, 704/9
WA (US) 2016/0019803 Al™* 1/2016 Ipeirotis GO9B 7/00
434/353
(72) Inventor: Weiwei Cheng, Berlin (DE) (Continued)
(73) Assignee: Amazon Technologies, Inc., Seattle, FOREIGN PATENT DOCUMENTS
WA (US)
WO WO-2018195875 Al * 112018 GO6F 40/30
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 OTHER PUBLICATIONS
US.C. 154(b) by 196 days. Kumar et al., “Automating Reading Comprehension by Generating
. Question and Answer Pairs”, D. Phung et al. (Eds): PAKDD 2018,
(21) Appl. No.: 16/193,951 LNAI 10939, pp. 335-348. (Year: 2018).*
(22) Filed: Nov. 16, 2018 Primary Examiner — Phuong Thao Cao
(51) Tnt. Cl (74) Attorney, Agent, or Firm — Knobbe, Martens, Olson
GOGF 16/2452 (2019.01) & Bear, LLP
) [GJ056NC f/08 (2006.01) (57) ABSTRACT
CPC) GOGF 16/24522 (2019.01); GO6N 3/08 Generally described, one or more aspects of the present
""""" T (2013.01) application correspond to machine learning techniques for
. . . ’ generating realistic question-answer (QA) pairs for populat-
(58) gl;lcd of Classification ?;gghl 6/24522: GO6N 3/08 ing an initial community ask feature of electronic store item
USP C """""""""""""" ’ 707/769 detail pages. The machine learning model can use a shared
g lt """ ﬁlf """"""" lthh .t encoder to generate an embedding of a seed sentence from
e application file tor compiete search ustory. existing description of an item, and then pass that embed-
(56) References Cited ding to a question decoder to generate a question. The

U.S. PATENT DOCUMENTS

5,895,466 A * 4/1999 Goldberg GO6F 16/3329
8,621,209 B1* 12/2013 Johansson HO4L 63/08
713/166

9,298,766 B2* 3/2016 Kozloski GOO6F 16/3331
9,330,084 B1* 5/2016 Kadambi GO6F 40/56
10,009,375 B1* 6/2018 Sites GO6N 3/082
2011/0004508 Al1* 1/2011 Huang G06Q 30/00

705/7.32

embedding of the seed sentence can be combined with a
state representation of the question and provided to an
answer decoder, which can generate an answer to the gen-
erated question. This can help overcome the cold start
problem, where customers are less likely to ask questions
about items that have no existing QA set. This can also help
surface relevant information about items in a concise QA
format that is easy for customers to find and read.

20 Claims, 9 Drawing Sheets

MULTITASK ENCODER-DECODER MCDEL 148

SEED SENTENCE 208

QUESTION 2

ny

N
]
52

i

z
AGGREGATOR

oY

ANSWE
/

INPUT 245

ANSWER 240

US 10,929,392 B1

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS

2016/0180242 Al* 6/2016 Byron GO6N 5/041

706/11
2017/0032689 Al* 2/2017 Beason . . GO6F 40/30
2017/0124432 Al* 5/2017 Chen GO6F 40/30
2017/0213139 Al* 7/2017 Sawant . GO6N 3/006
2017/0358295 Al* 12/2017 Roux ... GOG6F 40/40
2018/0114108 Al1* 4/2018 Lao GO6N 3/0445
2018/0121785 Al* 5/2018 Min GO6N 5/04
2018/0143966 Al* 5/2018 Lu GO6K 9/4628
2018/0150743 Al* 5/2018 Ma . GO6N 3/084
2018/0300314 Al™* 10/2018 Xie ..cocovvvvvvrvecnnnne GO6N 3/08
2018/0329884 Al* 11/2018 Xiongccc..... GO6N 3/0445
2018/0342174 Al* 11/2018 Zhang GO6F 40/216
2018/0365220 Al* 12/2018 Chakraborty . GO6N 3/0454
2019/0043379 Al* 2/2019 Yuan ... GO6N 3/02
2019/0065600 Al* 2/2019 Katz .. GOGF 16/345
2019/0079915 Al* 3/2019 Min GOG6F 40/20
2019/0130248 Al* 5/2019 Zhong . GOG6F 16/2462
2019/0173918 Al* 6/2019 Sites HO4L 63/1433
2019/0228099 Al* 7/2019 Bajajcccooevveenenn GOGF 16/38
2019/0258939 Al* 82019 Minccccoeveenen GO6N 3/0445
2019/0325068 Al* 10/2019 Lai GO6N 3/08
2019/0325523 Al* 10/2019 Demetry . GOG6F 16/2379
2019/0355270 Al* 11/2019 McCann GOG6F 40/35
2020/0004831 Al* 1/2020 Burceanu ... GOGF 40/211
2020/0042597 Al* 2/2020 Wu .. . GOG6F 16/3329
2020/0044990 Al* 2/2020 Zhao GO6N 7/00
2020/0065389 ALl* 2/2020 Lu ..o GO6N 3/0454

* cited by examiner

US 10,929,392 B1

Sheet 1 of 9

Feb. 23, 2021

U.S. Patent

Vi

Ol

"AJBSSE08U USUM UD-PDE 88N
€ 8sn |l ng yiooiemg Buiey ssiut | radde ustudojaasp A Busuuns jeeiB suioped
T ULIDA e sB 85eY0Ind B 18Y) ABS UBD | 'Sypem My B 1oy doydel sy pey Buiaei
uswidofers(siemyos Jogdogdey ey L B M B X
JewoIsnTy @
SMBIABL JBIGISND B
‘uopsend B yse 0] SH) ey og 184 uoiisanb g peisod Sey BUO OU X SHD0T
SIaMsUR B suolsanb JBCIEN)
SPIAIS UM USBIosSYoNG | e %
simoy gy crdnpeel e Alegey e)
WvY g0y pue sleiols go 4 e 00°00¥%
jossesoid e Bl joeiBig e S ok e
Bemuby Apwenyy e doyde
{ LU0 QITIUBKS MMM T o3 6 D
- g 1) 3 S J

= 0¢)

ﬁ/}\mom\

US 10,929,392 B1

Sheet 2 of 9

Feb. 23, 2021

U.S. Patent

R
ON
UI00I8NG 8ABY 318801 D
08T Hivd v
Srl
TIA0W 3003
HAQOONT
SV LLL TN
B

. AlBSSBOBL USUM UC-ppe ggn 8
88N JjiM ING Locien|g BuiAsy ssit |,

OFT FONZLINGS (338

‘AfESSE08U UBSUM UO-PRE GN

£ 8sn | ng yiomenig Buiney ssi | sdde wewudojeasp A Buwiing 1eaib sutioped i
1 YHom jem sem eSEUoING Ul 18U} ABS UBC | 'Sysem maj & Jop dorde| st pey Buinen

SMBIABL JIBUCISND

W/fioﬁ

‘uopsenh B ¥se o) 1845 83 88 JeA uonsenb g paisod sey suo ou o SNooT

SIeMEUR % sucpsenb Jswioieny

91 MOLVHINID vO W

»/(m.:

SNIAS LW UBBIOSUONG| e
smoy QL o dnpojel oy liseg e)
WYy g0 ypue sliRiols GO vy e 00°00¥$
ossecoid YR sy jo iRl e LM M M M
whemuby fpwenxsy e gowmm(m
C WOo s uiexs mmmidy o5 & 5
g e S y

S

V//!{oow.

US 10,929,392 B1

Sheet 3 of 9

Feb. 23, 2021

U.S. Patent

J} "Old

"AJBSSE08U USUM UD-PDE 88N
€ 8sn |l ng yiooiemg Buiey ssiut | radde ustudojaasp A Busuuns jeeiB suioped
T ULIDA e sB 85eY0Ind B 18Y) ABS UBD | 'Sypem My B 1oy doydel sy pey Buiaei
uswidofers(siemyos Jogdogdey ey L B M B X
JewoIsnTy @
SMSIABE JRWIGISNT) M
0/t 3 ON eMsuy
£HCE LUO0IBNG BABL I S80(] THORSIND
m SIBMSUR J0f oseeg juonsenb 2 eaH o |]
siamsue g suohsanb JBCIEND
SPIAIS UM USBIosSYoNG | e E
simoy gy crdnpeel e Alegey e)
WvY g0y pue sleiols go 4 e 00°00¥%
jossesoid e Bl joeiBig e S ok e
whemuy Asuwieny e aoﬁmﬁ
T . 504
{ LU0 QITIUBKS MMM T o3 6 D
- g 1) 3 S J

- (T}

ﬁ(mmow

US 10,929,392 B1

Sheet 4 of 9

Feb. 23, 2021

U.S. Patent

‘Aiessest

UBUM UO-DPE g8 B 9Sh i
g yooienig Buirey ssi

i sdde juswidojensp Aw
Buiuung 1eadb suuopsd iy i
LIOM [lom Sem 8seyInd ey}
1eu) ABs UBD | ‘syjesm Mey

g jo) dode| siy pey Buinen

A A X

ABU01enD @

SMBIARS JBlUCISND

SNIAIS UJiM USDIISLON0 |

sinoy

01 O1 dn psjel ey Aleles
N

a9 v pue efiviols g9 9
10832004d 1B 84) JO 81BIS
wbiemuby Asuesxs

‘uogsanb g yse
01 1541} 84} 8g 19f uogsenb e
paisod SBY SUG OU Y] SH00]

suonsenb Jawiosng

B3BY2ING

00°00%$

US 10,929,392 B1

Sheet 5 of 9

Feb. 23, 2021

U.S. Patent

0

i

L

UGHSSNG ST BMaUY
3 GR LUIO0JeNig 9BY 1 39001 D)

A B

Mm_mzw% 10§ UDIBSS JUONSEND & 8ABH ,Ou

suonsenb Jswioisng

sseyoing |

00°00¥$

B

ey dode

.. S

L GO

- (051

US 10,929,392 B1

Sheet 6 of 9

Feb. 23, 2021

U.S. Patent

Ve 'Ol

5 i3
H3IC00AC eIy
072 SAMSNY AMSNY A
3
572 LOdNEHIMSNY
H527 S3LY1S NOILSANY
072 s 7
IGO0 e O le HICOONT |
VEZZ NOLLSHND NOLLSIND © (3VHS

GT¢ FONALNGS G338 40
NOILY INISHHd434 J0L03A

GF1 T300W ¥3C003CUICOONT HSY LLLINW

502 FONALNZS 0338

US 10,929,392 B1

Sheet 7 of 9

Feb. 23, 2021

U.S. Patent

082 HIMSNY 54

- ONINIvHL o HA000440 5
m HLIM MY NGO HAMSNY
S T R, ot v+ ¢ e+t -+
4 % §

w oré

3

[P RO o ¥3A00NT e
| GRMYHS 5¥7 JONTLNIS ONINWYL

05 NOILLS3ND (V44
ONINIVAL H3A0030 o
HLIM JuvdiNCO NOILSIND

X

I'd

]
]
] 14
A 7

G¢ SSVd QdYMMOYE NOILSIND

wﬂ/l‘ a0d

U.S. Patent Feb. 23,2021 Sheet 8 of 9 US 10,929,392 B1

300
N

STAR
¥
ANALYZE TEXTUAL DESCRIPTION AND/OR REVIEWS
ABOUT AN ITEM TO IDENTIFY SEED SENTENCE(S) 305
FOR EACH 2

SEED SENTENCE PROVIDE SEED SENTENCE TO SHARED ENCODER TO
GENERATE A SEQUENCE OF HIDDEN STATE
REPRESENTATIONS OF THE SEED SENTENCE 310

¥

INPUT THE HIDDEN STATE REPRESENTATIONS INTO A
QUESTION DECODER TO GENERATE QUESTION 318

y
EXTRACT HIDDEN STATE REPRESENTATON OF
QUESTION FROM QUESTION DECODER AND
CONCATENATE WITH HIDDEN STATE REPRESENTATION
OF SEED SENTENCE 320

y
INPUT THE CONCATENATED HIDDEN STATE
REPRESENTATIONS INTO AN ANSWER DECODER TO
GENERATE ANSWER TO QUESTION 325

y
STORE QUESTION AND ANSWER PAIR 330

y
SELECT SET OF QUESTION AND ANSWER FAIRS 335

y
UPDATE DISPLAY OF ITEM DETAIL PAGE 340

END

U.S. Patent Feb. 23,2021 Sheet 9 of 9 US 10,929,392 B1

USER DEVICES 402

NETWORK
404

N e,
s @ o ®
290 @
20 @ S PR Fal e Wi
' H H
Fovy s @ wE B £ IN H KRIA\'\‘: i i\jC

oo xg gp so »

CNCD § oot ...,_,_ COMPUTING SYSTEM
o % B e i@g

ems
- -
" .
- N
-
L
s L.
o s
el

MEMORY 420)
OPERATING eveTEn 4o CATALOG
SYSTEM 427 L SYSTEM 424 SERVICE 426
N, jk &
> PROCESSOR(S) 410
> STORAGE 412
» O DEVICE(S) 414
» USER INTERFACE 416
¥ .
DATA REPOSITORY 430
. QUESTION
ITEM DATA 432 y g%?‘!N;f? , ANSWER
LR | PAIRS 436

US 10,929,392 B1

1
ARTIFICIAL INTELLIGENCE SYSTEM FOR
AUTOMATED GENERATION OF REALISTIC
QUESTION AND ANSWER PAIRS

BACKGROUND

An electronic store can host listings for various items in
the store, where such items include goods available for
acquisition (e.g., purchase or rental) by users of the elec-
tronic store. The electronic store can be a collection of
network-accessible services executed on computer hardware
that provide multiple channels (e.g., a mobile application,
voice-based search, web access, physical presences, etc.)
through which customers using client computing devices
can access various catalogs stored in databases to find
products and services (“items”) available to purchase, lease,
download, stream, and the like, sometimes in the form of
detail pages. These detail pages can include a large volume
of information about the items, for example in the form of
textual description and customer reviews.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A depicts an example user interface presenting a
detail page of an item.

FIG. 1B depicts a graphical overview of the use of a
machine learning model to process the information pre-
sented in the user interface of FIG. 1A in order to generate
a question and answer pair.

FIG. 1C depicts an example of the user interface of FIG.
1A, updated with the question and answer pair generated by
the machine learning model of FIG. 1B.

FIG. 1D depicts an example of the user interface of FIG.
1A adapted for mobile presentation.

FIG. 1E depicts an example of the user interface of FIG.
1D, updated with the question generated by the machine
learning model of FIG. 1B.

FIG. 2A depicts a schematic block diagram of the
machine learning model of FIG. 1B.

FIG. 2B depicts examples of backpropagation pathways
for training the machine leaning model of FIG. 2A.

FIG. 3 depicts a flowchart of an example process for
generating question and answer pairs, as depicted in FIG.
1B.

FIG. 4 illustrates a schematic block diagram of an
example interactive computing environment for performing
the machine learning question and answer generation of
FIGS. 1B and 3, and providing associated user interfaces.

DETAILED DESCRIPTION

Generally described, one or more aspects of the present
application correspond to machine learning techniques for
generating question and answer pairs relating to items in an
electronic store. As described above, an electronic store can
host listings for a variety of items, and can present customers
with detail pages presenting information about these items in
the form of seller-provided description and customer-pro-
vided reviews. The electronic store can also provide certain
community-based features, for example a question and
answer (QA) section of detail pages where customers can
post questions requesting answers from other customers who
are familiar with an item. This QA section may be surfaced
on the page to make it easier for users to quickly locate
information of interest. However, this QA section can face
the cold start challenge: an initial set of insightful questions
can facilitate additional questions and the accumulation of

20

25

30

35

40

45

50

55

2

additional information, however initially a detail page for an
item may not be populated with any question and answer
pairs.

The above described problems, among others, are
addressed in some embodiments by the disclosed machine
learning (ML) techniques for automatically generating a set
of realistic pairs of questions and corresponding answers
based on existing information describing an item. These QA
pairs can then be populated into the QA section of the item
detail page in order to foster additional community discus-
sion regarding item features. For example, the ML system
can analyze existing customer reviews of an item and/or
seller-provided description of the item to identify good
candidate sentences to use as input into the QA generation
model. During training, these can be review sentences that
are similar to both an existing question and its corresponding
answer in existing QA pairs for an item, so that the ML QA
generation model can learn to predict the QA pair from that
sentence. During use of the trained ML QA generation
model, sentences can be evaluated using a variety of criteria
such as length, grammar, spelling, similarity with the seller-
provided item description, and similarity with other review
sentences in the review set for this item. The ML QA
generation model can use a number of selected sentences to
generate a set of different QA pairs relating to the item, and
the QA pairs populated into the item detail page can be
selected from this set, for example by determining similar
clusters of QA pairs and selecting a QA pair from the largest
cluster or clusters. Multiple QA pairs can also be selected
based on diversity from one another, and/or based on having
different answers.

The disclosed ML QA generation model can use three
recurrent neural networks (RNNs) to generate the QA pairs.
A first of these RNNs can be considered as a “shared
encoder,” as it processes the seed sentence and provides its
output to both a question decoder RNN and an answer
decoder RNN. The question decoder can receive the output
of the shared encoder and process it according to its learned
parameters to generate a sequence of question states, which
can be mapped to a known vocabulary in order to generate
a question. Further, the shared encoder output can be com-
bined with these question states and provided to the answer
decoder, which can determine an answer to the question
based on its learned parameters. Further details of this
multi-task ML architecture and its associated training tech-
niques are described in more detail below.

As would be appreciated by one of skill in the art, the use
of a ML system for automated QA pair generation, as
disclosed herein, represents a significant technological
advance over prior implementations. Specifically, the task of
navigating a large volume of item data to determine aspects
of interest can be burdensome and time consuming for users,
especially as they have to locate and navigate to the data
they are looking for. This can be particularly true for
computing devices with small screens, where smaller quan-
tities of information can be displayed to the user at a time
and thus navigation of larger volumes of information is more
difficult. The disclosed ML techniques and QA populated
user interfaces simplify this task by surfacing relevant
details in a concise, QA format so that users can more
quickly and easily assess item aspects of interest. By popu-
lating these QA pairs into item detail page user interfaces,
the disclosed technology allows users to make decisions
about whether they are interested in certain items with fewer
clicks, taps, or other interactions (e.g., by not having to read
through large volumes of item reviews). This improved
discoverability can also reduce load on the system by the

US 10,929,392 B1

3

users not having to navigate through as many pages (e.g., not
having to load review pages but rather finding the informa-
tion they want on the item detail page). Accordingly, the
disclosed simplified user interfaces represent a technological
advance over existing systems.

Further, the parameter sharing of the disclosed ML archi-
tecture represents another technological advance. For
example, parameters are shared between the shared encoder
and each of the question decoder and answer decoder. This
can be more efficient in terms of memory and processing
usage than direct text-to-text systems, because the same
encoder is used to feed a hidden state representation of the
seed sentence into both decoders. Further, this shared
encoder architecture provides the benefit of relatedness
between the question and answer, giving the computing
system the ability to generate a realistic, natural sounding
QA pair (e.g. a QA pair that appears to have been written by
a human or humans). By training the question encoder based
on known answers to training questions during the training
phase, the question encoder can learn (e.g., by programmati-
cally obtaining a set of parameters) how to generate better
questions, because it also encodes knowledge of the answers
into its learned parameters. As such, the embodiments
described herein represent significant improvements in com-
puter-related technology.

As used herein, the term “item,” in addition to having its
ordinary meaning, is used interchangeably to refer to an item
itself (e.g., a particular product) and to its description or
representation in a computer system or electronic catalog.
An item may also be a service, for example a cloud
computing service offered by the electronic catalog, or a
value-added service (e.g., setup, installation, maintenance)
associated with a physical product. As will be apparent from
the context in which it is used, the term may also sometimes
be used herein to refer only to the item itself or only to its
representation in a computer system.

Although certain examples presented herein use sentences
as input into the ML model, it will be appreciated that the
input data is not limited to the grammatical structure of a
sentence, and in other implementation can use phrases or
clusters of sentences. As used herein, an “embedding” refers
to a learned representation of features of a sentence or other
form of textual description. An embedding can be a vector,
matrix, or other data format consumable by machine learn-
ing models.

The present disclosure provides examples in the context
of an electronically hosted store of items. It will be appre-
ciated that implementations of the disclosed ML QA gen-
erator can be used for other types of items represented by
text where community QA features may be desirable, for
example information sources regarding restaurants or other
business establishments, television shows, movies, and the
like.

Various aspects of the disclosure will now be described
with regard to certain examples and embodiments, which are
intended to illustrate but not limit the disclosure. Although
the examples and embodiments described herein will focus,
for the purpose of illustration, specific calculations and
algorithms, one of skill in the art will appreciate the
examples are illustrate only, and are not intended to be
limiting.

Overview of Example ML QA Generation Systems and
Techniques

FIG. 1A depicts an example user interface presenting a
detail page 100A of an item. Although this example relates
to a physical product (the laptop), the disclosed QA genera-
tion techniques can be applied to other types of items,

10

15

20

25

30

35

40

45

55

60

65

4

including streaming media such as music and movies, other
types of digital files that are available for streaming or
download, or services (e.g., assembly services, maintenance
services, warranty services). The detail page 100A includes
an image 105 depicting the item and seller-provided descrip-
tion 110 of the item, which in this example is a laptop. The
detail page 100A also includes a star rating, the price of the
item, and a user-selectable feature to purchase the item.
Some implementations can include additional information
relating to shipping cost and timeframe, identification and
rating of a seller providing the item. In addition, the detail
page 100A includes a QA section 115 where users of the
electronic store can post questions about the item and
receive answers, either from the seller or from other users
who have purchased or otherwise interacted with the item.
In this example, the QA section 115 has not yet been
populated with any user-provided questions. The detail page
100A also includes a customer review section 120 where
users can post textual reviews of the item. As illustrated,
although the QA section 115 is empty, the customer review
section 120 includes at least one review.

As illustrated in FIG. 1A, the QA section 115 can be
surfaced above (e.g., positioned in a location the user will
see before) the review section 120. This can beneficially
provide a more concise listing of information on topics of
interest before the more detailed reviews. As described
above, it can be difficult and time consuming for users to
locate particular information of interest in a large body of
long reviews, and so the QA section 115 can make it easier
to quickly learn facts of interest about an item. However, in
this example the QA section 115 does not have any ques-
tions, which can have the unintended effect of discouragint
users from asking questions about the item.

In order to remedy the above-described cold start problem
with the QA section, FIG. 1B depicts a graphical overview
of the use of a machine learning model—the ML QA
generator 160—to process the information presented in the
user interface 100A in order to generate a question and
answer pair 150. Here, a text selector 135 can receive the
description text 125 and review text 130 in order to select a
seed sentence 140 to use as input into the multi-task
encoder-decoder model 145 that generates the QA pair 150.
Although the example of FIG. 1B depicts using a single seed
sentence 140 to generate a single QA pair 150, some
implementations may identify multiple seed sentences, use
these to generate a corresponding number of QA pairs, and
then select one or more of the generated QA pairs for
presentation on the detail page. Further, as described herein,
some implementations can use non-textual information to
generate a QA pair, for example the item image 105, other
images of the item, and audio information about the item
(e.g., from a seller’s explanation video or a customer video
review).

Although FIG. 1B shows both the question and answer
depicted in the QA section 115, some implementations may
display only the question. In these scenarios, the benefit of
seeding the QA section 115 with initial data can still be
achieved, and users may submit their own answers to the
question. As described with respect to the parameter sharing
below, one reason for also generating answers is to improve
the quality of the generated questions, however there may
not be a mechanism to guarantee that a generated answer
actually answers the generated question. Accordingly, even
if only the question is displayed, the system can still benefit
from learning to generate both a question and an answer.

The text selector 135 can use a variety of criteria to
determine which sentence or sentences to use. Some imple-

US 10,929,392 B1

5

mentations of the text selector 135 may impose a word count
limit on seed sentences, for example sentences that are not
shorter than five words and not longer than 300 words
(though this range can be altered for other implementations).
Some implementations of the text selector 135 may also
have spelling and/or grammar related criteria, and can
perform automated spell and grammar checking on sen-
tences to select seed sentences having fewer than a threshold
number of errors, or higher than a threshold spelling and/or
grammar score. Similarly, spelling and/or grammar criteria
and associated evaluations, as well as content filters, can be
used to change a weight associated with certain words or
omit certain words or phrases (e.g., potentially offensive
content, parental controls, etc). Some implementations of
the text selector 135 can identify seed sentences based on
computing similarity between a particular sentence in a
review of an item and other sentences in the corpus of
customer reviews of that item, or between a particular
sentence in a review of an item and the seller-provided
description of the item.

These similarity measures can be computed based on
word or sub-word embeddings of the review sentences and
description. Subword-level information can be helpful for
capturing the meaning and morphology of words, especially
for out-of-vocabulary entries. These embeddings can be
trained on individual item description and reviews, on the
descriptions and reviews of categories of items, or on the
description and reviews of the entire catalog of items, in
various implementations. For example, some implementa-
tions can use convolutional neural network (CNN) and
recurrent neural network (RNN) subword-level composition
functions for learning word embeddings.

Selected seed sentences 140 can be individually input into
the multi-task encoder-decoder model 145 to generate a
corresponding QA pair 150. An example architecture of the
multi-task encoder-decoder model 145 is described in fur-
ther detail with respect to FIG. 2A, and an example of
training the multi-task encoder-decoder model 145 is
described in further detail with respect to FIG. 2B. Here, the
text selector 135 has selected the seed sentence “I miss
having Bluetooth but will use a USB add-on when neces-
sary.” In this example, the multi-task encoder-decoder
model 145 has generated the QA pair 150 with a question of
“Does it have Bluetooth?” and the answer of “No.” This
example is drawn from an actual test performance of the ML
QA generator 160, and reflects its ability to both generate
natural-sounding QA pairs, and also generate QA pairs that
are factual and related to the item under consideration.

The QA pair 150 and other generated QA pairs can be sent
to the Ul updater 155, which can select a particular QA pair
or pairs to display in the QA section 115 of the detail page
100A. The UI updater 155 can implement similarity mea-
sures based on word or sub-word embeddings of the gen-
erated QA pairs (or of just the questions in the QA pairs) in
order to select QA pairs. For example, the UI updater 155
can cluster similar questions together (e.g., questions within
a threshold level of similarity from one another) and can
determine which cluster has the most questions. A particular
question can be selected from this cluster, for example
randomly, or intelligently based on one or more of its
similarity to the item description, grammar score, or simi-
larity to user-provided questions for similar items. Some
implementations can select a set of questions based, for
example, on having different answers (e.g., “No” and
“Yes”), or based on the set of questions having a high
diversity (measured based on differences between the
embeddings of the questions). Some implementations can

20

25

30

40

45

6

perform manual or automated evaluation of naturalness
(e.g., how natural the question sounds), adequacy (e.g., how
adequate the question is for this item), and relatedness (e.g.,
how well the answer relates to the question) in order to select
particular QA pairs.

After selecting a QA pair 150 or set of QA pairs, the Ul
updater 155 can update instructions for generating the detail
page 100A to include the selected QA pair(s). Thereafter,
when users of the electronic store visit that detail page (e.g.,
by selecting a navigational link that leads to the detail page),
the page output to these users can include the computer-
generated QA pair(s). FIG. 1C depicts an example of the
user interface 100B updated with the question and answer
pair 150 generated by the ML, QA generator 160. As illus-
trated, the QA pair 150 relating to whether the laptop has
Bluetooth now appears in the QA section 115. Beneficially,
this both presents this information to users in a concise
manner, and the presence of an existing QA pair can also
facilitate further community discussion about the item. FIG.
1C also depicts an example voting mechanism 170 in the
form of selectable thumbs-up and thumbs down icons that
can be provided for users to indicate whether questions
and/or their answers are helpful or unhelpful. These votes
can be used to select good QA pairs from existing customer-
provided QA pairs during training, to weight training data,
and to provide feedback for retraining based on user voting
on computer-generated questions and/or answers.

FIG. 1D depicts an example of the user interface of FIG.
1A adapted for mobile presentation. Due to the smaller
screen size of mobile devices, the information about the item
is presented in a more compact way. For example, the initial
page displayed to the user can include the item image 105,
price, rating, title, and purchase button, as well as the QA
section 115. The item details 110 and customer reviews 120
may be displayed on different pages, for example another
page that the user can scroll to or can navigate to using a
selectable link. Due to the more compact space limitation,
the QA section 115 can be particularly important for con-
cisely conveying item information to users on mobile
devices. FIG. 1D also shows the QA section 115 unpopu-
lated with any questions or answers.

FIG. 1E depicts an example of the user interface of FIG.
1D, updated with the question generated by the machine
learning model of FIG. 1B. FIG. 1E also depicts a user-
selectable option 165 for a customer to answer the computer-
generated question. Some implementations may display an
indication that the question (and answer, if displayed) were
generated by a computer rather than a customer. FIG. 1E
also depicts an example voting mechanism 170 in the form
of selectable thumbs-up and thumbs down icons that can be
provided for users to indicate whether displayed questions
are helpful or unhelpful.

Although the examples of FIGS. 1A-1E are presented in
the context of graphical user interfaces, users may addition-
ally or alternatively interact with the electronic store via
speech-based user interfaces, for example using a speech-
based electronic assistant device. Such a device may be the
voice-based systems of U.S. patent application Ser. No.
14/456,620, titled “Voice application architecture,” filed
Aug. 11, 2014, and U.S. patent application Ser. No. 14/107,
931, titled “Attribute-based audio channel arbitration,” filed
Dec. 16, 2013, the entireties of which are hereby incorpo-
rated by reference herein. A speech-based device may pres-
ent an audio description of items, for example by audibly
speaking the title, QA pairs, details, and/or description of an
item using recorded or synthesized speech. This audible user
interface can include voice-processing functionality that

US 10,929,392 B1

7

enables the user to vocally request further information,
answer questions about the item, and acquire the item. In
speech-based user interface examples, presenting informa-
tion in QA pair form can be important to save time when the
user is listening to the information about the items, as users
may prefer to hear a reading of compact QA pairs rather than
hearing numerous lengthy reviews read aloud. These QA
pairs may be computer-generated as described herein.

FIG. 2A depicts a schematic block diagram of the multi-
task encoder-decoder model 145. The multi-task encoder-
decoder model 145 includes three ML models—the shared
encoder 210, question decoder 220, and answer decoder
235. Generally speaking, the shared encoder 210 learns to
map input sentences to feature representations referred to
herein as hidden state representations of the sentence. The
question decoder 220 learns to take this feature representa-
tion as input, process it to create a hidden state representa-
tion of a question, and then transform this hidden state
representation into a question. The answer decoder 235 uses
both the hidden state representations of the sentence and the
hidden state representation of the question to produce an
output answer to the question. The hidden states can be
considered as learned embeddings of the sequences of
sentences. This creates an encoder-decoder network with a
shared encoder 210 that provides its output to both the
question decoder 220 and the answer decoder 235. This
approach to jointly generate questions and answers is a
multi-task learning framework. As described in more detail
below, the multi-task encoder-decoder model 145 uses hard
parameter sharing, where the different functions mapping
the input sentence to the two tasks (question and answer)
share a subset of their parameters.

Each of the shared encoder 210, question decoder 220,
and answer decoder 235 can be a type of recurrent neural
network (RNN). Neural networks are used to model com-
plex relationships between inputs and outputs or to find
patterns in data, where the dependency between the inputs
and the outputs cannot be easily ascertained. A neural
network typically includes an input layer, one or more
intermediate (“hidden™) layers, and an output layer, with
each layer including a number of nodes that can vary
between layers. The nodes in each layer connect to some or
all nodes in the subsequent layer. Each node can weight and
sum the inputs provided by connected nodes in a previous
layer, perform an activation (e.g., ReLU, tan h, sigmoid,
etc.) on the summed input, and output this activation value
to connected nodes in a next layer. The weights of these
connections are typically learnt from data during the training
process, for example through backpropagation in which the
network parameters (e.g., the connection weights) are tuned
to produce expected outputs given corresponding inputs in
labeled training data. Thus, an artificial neural network is an
adaptive system that is configured to change its structure
(e.g., the connection weights) based on information that
flows through the network during training, and the weights
of the hidden layers can be considered as an encoding of
meaningful patterns in the data.

During training, a neural network can be exposed to pairs
in its training data and can modify its parameters to be able
to predict the output of a pair when provided with the input.
For the present disclosure, these data pairs each include an
existing QA pair for an item as the output and an identified
similar sentence in a customer review of the item as the
input. The multi-task encoder-decoder model 145 is trained
in an end-to-end fashion by alternately minimizing indi-
vidual losses for subnetwork parameters involved in gener-
ating each of the network outputs (question and answer).

20

25

30

35

40

45

8

Further details of how the multi-task encoder-decoder model
can be trained are described with respect to FIG. 1B.

It will be appreciated that the disclosed neural networks
are implemented using computing hardware. For example,
input layer nodes can be implemented using a memory for
storing input values, a memory can be used to store the
weights for the connections between nodes, and output layer
nodes can be implemented using a memory for storing
output values. Input values can be stored as feature vectors
or embeddings, as described herein. Hidden layer nodes can
be implemented using computer-executable instructions
executed by hardware processing components to perform the
specified computations to perform forward passes of data
through the network layers.

As described above, the shared encoder 210, question
decoder 220, and answer decoder 235 can each be a RNN,
which is a class of artificial neural network where connec-
tions between nodes form a directed graph along a sequence.
This allows the RNN to effectively model data of a sequen-
tial nature, such as a sentence. RNNs are called recurrent
because they perform the same task for every element or step
of a sequence (e.g., the same node is repeated for each
element of the sequence), with the output being depended on
the previous computations. Thus, a RNN can share the same
learned parameters across all steps. This RNN node uses
computations from a previous state in computing the output
for the next state, which gives the RNN a “memory” which
captures information about what has been calculated so far.
For example, if the sequence being analyzed is a sentence of
five words, the node of the RNN would be repeated to form
a 5-layer neural network, one layer for each word. At each
time step (e.g., each instance of the node), the RNN can
compute an output based on the input (e.g., an embedding
corresponding to a particular word in the sentence) and a
hidden state (representing the memory of the network)
calculated based on the previous hidden state and the input
at the current step. Accordingly, RNNs, for example long
short-term memory neural networks (“LSTMs”) and gated
recurrent unit neural networks (“GRUs”) have emerged as
powerful models for language processing.

In some implementations, the shared encoder 210, ques-
tion decoder 220, and answer decoder 235 can be bi-
directional LSTMs. A bi-directional LSTM can be imple-
mented as two instances of an LSTM that cooperate to
generate an output, where a first instance processes a sen-
tence in a forward direction and a second instance processes
the sentence in a backward direction, such that the output is
generated from both past and future contexts. For example,
for the seed sentence “I miss having Bluetooth but will use
a USB add-on when necessary,” the forward instance of the
LSTM can treat “I” as the first time step, “miss” as the
second time step,” “having” as the third time step, and so
forth. The backward instance of the LSTM can treat “nec-
essary” as the first time step, “when” as the second time step,
“add-on” as the third time step, and so forth.

In some implementations, the shared encoder 210 may be
a different form of neural network than the question decoder
220 and answer decoder 235, or may include multiple
different neural networks that cooperate to generate the
vector representation 215. For example, if the input data
includes image data, the shared encoder 210 can use a CNN
to generate an embedding of the image data. CNNs and
RNNs may also be used for processing audio waveform
data. Some implementations of the shared encoder 210 can
use multiple linked data types as input into multiple different
models to generate the vector representation. For example,
a customer review can include text, an image, and a video

US 10,929,392 B1

9

(collectively referred to as media describing the item). The
text of the review may be identified as similar to the
seller-provided description, and these multiple forms of data
can be input into different ML, models with their outputs
combined to form the vector representation 215. For
example, the text can be input into a bi-directional LSTM,
the image can be input into a CNN, and the audio waveform
from part of all of the video can be input into another CNN
or an RNN. Certain frames from the video may also be input
into the shared encoder 210. In some implementations users
may interact with an electronic store through a speech-based
user interface, and their verbal reviews can be processed to
generate QA pairs as described herein. For example, the
audio waveform can be directly input into a CNN or RNN,
or speech-to-text processing can be performed to generate a
textual sentence for input into a bi-directional LSTM.

Turning specifically to the flow of data through the
multi-task encoder-decoder FIG. 2A illustrates how a seed
sentence 205 is fed into the shared encoder 210. As
described above, although this example presents input in the
form of a sentence, phrases (e.g., not complete sentences) or
groups of sentences, paragraphs, or any text span can be
used in other implementations. For example, embeddings of
each word in the seed sentence 205 can be fed into sequen-
tial nodes of an RNN. For example, the shared encoder 210
can compute a sequence ¢=(c, . . . ¢;) of hidden represen-
tations of the input x (here, seed sentence 205) for every time
step t (1 through T) (also called a context), using an encoder
RNN function enc:

crenc(x,c, ;)

M

The vector representation 215 of the seed sentence 205
depicted in FIG. 2A can be this sequence c=(c; . . . ¢c;),
which is the sequence of hidden representations of the seed
sentence encoded by the shared encoder 210. This can be
provided as input into the question decoder 220, which can
predict the optimal question g as:

@

where P, is a conditional probability computed based on a
previously generated output, a state s,, and the context c:

3

Here, u is a function that transforms the hidden question
states (q, ... qy) into output probabilities (e.g., probabilities
for each word in the output vocabulary), for example via a
dense projection and a nonlinearity, followed by a sofimax
function. This can be a fully connected layer that computes
the probability that a particular question state is each of the
words in the output vocabulary, where the number of nodes
in this layer corresponds to the number of words in the
vocabulary, and the sum of all output probabilities adds to
one. Thus, the output node with the highest probability can
identify the word for a particular state of the output question
225A. The state s, is given by a decoder RNN:

g=argmax H;PQG(quql s qz—lxc>)

P@lqr - qrpe))mu(ge1,5,0)

sdec(q,.1,5,.1,¢)

Q)

where dec is a decoder RNN function, for example a
bi-directional LSTM network. The question 225A is formed
as a sequence of words identified from the output question
vocabulary based on these output probabilities.

The question states {(q; ... qzy) 225B can be aggregated
(e.g., at aggregator 230) with the vector representation 215
of'the seed sentence 205 (¢, ... c;) to formthe answer input
245 for the answer decoder 235. In some implementations
the aggregator 230 may concatenate the two vectors. It can
also pull these two together and include pairwise interaction

25

30

40

45

55

10

terms (e.g., by learning how to multiply or add certain terms
of the vectors together). The answer generation (AG) model
is similar to the question generation (QG) model, with the
output sequence probability a again computed by a decoder
function:

g=argmax ILP s(al{a,. . . a,,&))

®

These conditional probabilities P, are computed from a
previous output, some state z, (computed according to equa-
tion (4) above), a projection v (analogous to u above), and
an array of answer context vectors:

at—l:E))=W(a,.1,2,€)

Q)

However, the answer model differs from the question
model in that it is implicitly conditioned on the learned
parameters of the question decoder 220, concatenating the
states s, computed by the fully unrolled question decoder
220 with the shared encoder hidden states ¢, to generate an
augmented context ¢=(&, . . . &;) (the answer input 245).
Here, &,=[c,, s,], where [*,¢] denotes vector concatenation. In
sharing the weights used to compute the hidden encoder
states ¢, as well as the ones in the generation decoder
between the QG and AG models, both are updated alter-
nately as each of the two tasks are optimized, as described
in further detail with respect to FIG. 2B. Similar to the
question decoder 220, the answer decoder 235 can also use
a dense projection and a nonlinearity followed by a softmax
function to determine the probability of each state of the
answer being a particular word in the output answer vocabu-
lary.

The question decoder 220 during testing was able to
generate questions that were rated by manual reviewers as
adequate for the items for which the questions were gener-
ated. One example was generated for a rechargeable power
pack, where the seed sentence from an existing customer
review was ‘“Under normal use, the batteries last a few
days,” and the generated question was “How long does the
battery last?” In this example, the review sentence explicitly
answers the generated question, and so the answer generated
by the answer decoder 235 can be highly related to the
question. Another example is described above for a laptop
with respect to FIGS. 1A-1C. In that example, the review
sentence “I miss having Bluetooth but will use a USB
add-on when necessary” only implicitly answers the ques-
tion of “Does it have Bluetooth” but the answer decoder 235
was able to pick up on the answer “No” from the implicit
statement in the review sentence. In some test implementa-
tions, the question decoder 220 generated questions with
additional polite expressions learned from the training data.
For instance, one example generated question is “Is it
possible to remove the laptop? Thanks!”

In some test implementations, over 50% of the generated
answers by the answer decoder 235 were “yes” or “no.”
Some generated answers may not have answered the gen-
erated question, however users of the catalog can submit
their own answers to the question, and the focus of the
disclosed ML techniques can be to generate questions to
promote user engagement with the community QA feature.

As described above, some implementations during infer-
ence (e.g., use of the trained model to generate new data)
may only require a generated question for display on an item
detail page. In such implementations, the parameters of the
question encoder may be trained based on minimizing losses
from the output of the answer decoder as described above.
However, the answer decoder may be dropped from the
inference instance of the multi-task encoder-decoder model
145 in order to save processing time, processing resources,

plalla,. ..

US 10,929,392 B1

11

and memory resources, as its output may not be needed. In
such implementations, the parameters of the trained question
decoder 220 would still reflect the insight learned based on
training the system with answer decoder 235.

FIG. 2B depicts examples of training data and backpropa-
gation pathways for training the machine leaning model of
FIG. 2A. Here, the training data can consist of input review
sentences and corresponding QA output pairs drawn from
customer provided reviews and QA pairs. Some questions
may have multiple different user-submitted answers. Each of
these answers paired with the question can be a separate QA
pair usable for training. As described above, the text selector
135 can select training sentences using word embedding or
sub-word embedding based similarity measures. For
example, each sentence can have a first similarity measure
computed with existing questions, and a second similarity
measure computed with the answers to these existing ques-
tions. The following scoring function can be used in some
implementations to quantify the similarity between a review
sentence r and a QA pair (q, a):

sim(r{¢,a))=simy(rq)+simy(ra)

M
The individual function sim, measuring similarity
between question and review sentence is computed as:

Simg(£a)=hSiM gd 5 q)+hosimy, (1 a)+hssi

®)

where A, A,, and A;. are weights that can be set manually
or learned. The measure of similarity between the answer
and the review sentence sim, is computed analogously. A
certain number n of review sentences and corresponding QA
pairs can be selected based on having the highest n scores for
equation (8). Some embodiments can additionally consider
user-provided votes on the QA pairs in order to select pairs
that are upvoted more than they are downvoted, or to select
pairs that are most highly upvoted. Some embodiments can
weight the training data based on number of upvotes,
number of downvotes, or a helpfulness score generated from
total upvotes and downvotes for a QA pair.

In equation (8), sim,;, is the cosine similarity of the
weighted averages over 100-dimensional word embeddings
for all nouns, verbs, and adjectives in r and q. Tf-idf weights
are computed over all questions, answers, and review sen-
tences in the dataset. In equation (8), sim,,, denotes the
cosine similarity of the averages over subword embeddings
for all sub-words in in r and q. These subword embeddings
can be computed based on byte pair Encoding. Representing
inr and q by subword embeddings instead word embeddings
can compensate for out-of-vocabulary words resulting from
spelling variations and item-specific terms in the data. In
equation (8), sim,,,,,; denotes the Jaccard index computed on
the sets of product mentions in r and q,

mpmd(r, q)

P,
P,

N
U

Py)

Siproa(r, q) =

<8

Mentions of products can be identified using natural
language processing (NLP) systems with a named-entity
recognition (NER) model.

In some implementations, human annotation of the train-
ing data can be collected for verifying triples of correspond-
ing review sentences and QA pairs. For example, annotators
can be presented with the item title, a question, the top ten
review, and then be asked to indicate all review sentences
that answer the question. In one example training imple-
mentation, the training data obtained human annotations for

10

15

20

25

30

35

40

45

50

55

60

65

12

65,000. Based on the annotated triples, the training can
optimize the scoring function in equation (7) and use the
optimized function to compute the most similar review
sentence for each QA pair in the dataset. In the example
training implementation, this yielded 262,087 automatically
extracted triples that were used as training data.

During the training phase, the training sentence 245 can
be forward passed through the shared encoder, question
decoder 220, and answer decoder 235. Training can involve
alternatively minimizing individual losses for the question
and answer outputs. The loss functions for both the question
decoder 220 and the answer decoder 235 can be categorical
cross-entropy between the predicted conditional probabili-
ties in equations (2) and (5). As shown in FIG. 2B, this
alternative minimization of losses can involve two backward
passes that optimize the parameters of the subnetwork (e.g.,
the portion of the overall multi-task encoder-decoder model)
involved in generating the output. For the question back-
ward pass 255, the output of the question decoder 220 can
be compared with the training question 250, and the back-
ward pass can optimize network parameters in the question
decoder 220 and the shared encoder 210. For the answer
backward pass 265, the output of the answer decoder 235
can be compared with the training answer 260, and the
backward pass can optimize network parameters in the
answer decoder, question decoder, and shared encoder 210.
Some implementations can perform an additional backward
pass for minimizing the answer losses along the path from
the answer decoder 235 through the shared encode 210. This
joint learning of question and answer predictions yields the
parameter sharing between these two tasks. Advantageously,
this can enable training from disjoint datasets and optimi-
zation of parts of a network’s parameters for a given task
using labels for some other task.

During training, input can be converted to all lowercase
and transformed to sequences of 3,000 distinct subword
units via byte pair encoding. Byte pair encoding is a form of
data compression in which the most common pair of con-
secutive bytes is replaced with a byte that does not occur
within that data, and so forth until all consecutive bytes are
replaced with other bytes. A table of these replacements can
be used to rebuild the original data. The embedding layer can
be initialized to the 300-dimensional pretrained BPE embed-
dings that were also used for the training data collection,
optimized as the model is trained. The bi-directional LSTMs
used for the various ML models can be single-layer with 128
hidden dimensions in one implementation. In some imple-
mentations, the maximum number of time steps (individual
subword units) for input and output can be 50, correspond-
ing to around the 95” percentile of reviews and more than
the 997 percentile of questions and answers.

Some implementations can additionally use the question
backward pass 255 and/or answer backward pass 265 for
retraining, that is, updating the model parameters based on
new data. This new data can be generated in some imple-
mentations based on user voting on computer-generated
questions or answers that indicate whether these are good or
bad. Such retraining can start with the current model param-
eters instead of randomly initialized parameters (as in the
initial training).

FIG. 3 depicts a flowchart of an example process 300 for
generating question and answer pairs, as depicted in FIG.
1B. At block 305, the text selector 135 can analyze the
textual description and/or reviews of an item to identify seed
sentences for use in generating QA pairs. Block 305 may be
performed periodically on data representing items that are

US 10,929,392 B1

13

identified as having one or more reviews and a seller-
provided item description, but not any user-provided QA.

At block 310, the seed sentence can be provided to the
shared encoder 210 to generate a sequence of hidden state
representations of the seed sentence, as described above. At
block 315, this hidden state representation can be input into
the question decoder 220 to generate a question. As
described above, in this manner the question is automati-
cally generated based on the existing review sentence pro-
vided by a user of the electronic store.

At block 320, the system can extract a hidden state
representation of the question states from the question
decoder 220 and concatenate it with the hidden state repre-
sentation of the seed sentence. At block 325, this concat-
enated vector is provided to the answer decoder 235 in order
to generate an answer to the question. As described above,
using the concatenated vector enables the answer decoder
235 to generate the answer based on both the initial review
sentence and on the generated question, such that the answer
and question are related.

At block 330, the system can store the QA pair in
association with an identifier of the item. As shown by the
dashed box, blocks 310-330 can be repeated for a number of
different seed sentences from the customer review data in
order to generate a pool of candidate QA pairs relating to this
item.

At block 335, the Ul updater 155 can select a set of QA
pairs for display on the item detail page. As described above,
in some implementations a QA pair can be selected based on
clustering similar questions together and selecting a QA pair
having a question in the largest cluster. Additional QA pairs
can be selected based on diversity with this initial selected
QA pair, and with each other, up to a predetermined set size.
In addition, the selected QA pairs can be identified based on
having a high degree of similarity to the seller-provided item
description. These similarity and diversity measures can be
computed using word embeddings and/or subword embed-
dings as described above.

At block 340, the UI updater 155 can update the instruc-
tions for displaying the item detail page to include the
selected set of QA pairs in the QA section. Thereafter, the
electronic store can cause output of this page to a user device
when a user requests to view the detail page of the item. In
some implementations, after a certain number of user-
provided questions are accrued for this item, the UI updater
155 may remove the computer-generated questions from the
QA section, while other implementations may leave the
computer-generated questions in the set.

In this manner, using a multi-task encoder-decoder model,
the disclosed ML system is able to generate natural ques-
tions which are adequate for the items they concern, in order
to help users more efficiently locate information of interest
about items, and in order to foster community discussion
about items via the QA user interface features.

Execution Environment

FIG. 4 is a block diagram of an illustrative computing
system 400 configured to implement the above-described
processes to train and implement a ML, Q&A generator 160
and generate associated user interfaces, as described herein.
The architecture of the interactive computing system 400
includes a memory 420 in communication with a processor
410, which can be in direct communication with one another
or distributed among computing devices within a networked
computing system and in communication with each other.
Components used for the architecture may depend at least in
part upon the type of network and/or environment selected.

10

25

40

45

55

14

As depicted interactive computing system 400 may
include one or more computers, perhaps arranged in a cluster
of servers or as a server farm. The memory and processors
that make up these computers may be located within one
computer or distributed throughout many computers (in-
cluding computers that are remote from one another) as
detailed herein. These servers may be configured to intelli-
gently display and configure multi-offer user interfaces, as
described herein. For example, the interactive computing
system 400 may be configured to manage user interfaces
displayed in connection with an electronic store.

The interactive computing system 400 may include at
least one memory 420 and one or more processing units (or
processor(s)) 410. The memory 420 may include more than
one memory and may be distributed throughout the inter-
active computing system 400. The memory 420 may store
program instructions that are loadable and executable on the
processor(s) 410 as well as data generated during the execu-
tion of these programs. Depending on the configuration and
type of memory, the memory 420 may be volatile (such as
RAM and/or non-volatile (such as read-only memory
(“ROM”), flash memory, or other memory). In some
examples, the memory 420 may include multiple different
types of memory, such as static random access memory
(“SRAM”), dynamic random access memory (“DRAM”), or
ROM.

The memory can store the program instructions as a
number of modules that configure processor(s) 410 to per-
form the various functions described herein, for example
operating system 422, ML system 424, and catalog service
426. The memory 420 may include operating system 422 for
interacting with the interactive computing system 400. The
ML system 424 can include the ML, Q&A generator 160, a
training module configured to implement the training work-
flow described above, instructions regarding when to per-
form retraining and what data to collect for retraining, and
an inference module configured to implement the process
300. The ML system 424 can also include a feedback
component that may re-train the prediction model 290 based
on user-provided answers to computer-generated questions,
or user-provided feedback on computer-generated QA pairs.

Users can browse an electronic catalog provided by the
catalog service 426 to obtain information about electronic
catalog content stored in an item data repository 432. The
electronic catalog content can include detailed information
about these products. In one embodiment, this content is
arranged in a hierarchical structure, having items associated
with one or more categories or browse nodes in a hierarchy
(or graph). The catalog service 426 can provide functionality
for users to browse the item hierarchy in addition to search-
ing the catalog. Users can acquire items via offers generated
by the disclosed techniques. The catalog service 426 can
also provide functionality users to participate in community
features such as the disclosed QA sections of item detail
pages.

The processor 410 includes one or more general purpose
computers, dedicated microprocessors, graphics processors,
or other processing devices capable of communicating elec-
tronic information. Examples of the processor 410 include
one or more application-specific integrated circuits
(“ASICs”), for example ASICs purpose built for machine
learning training and/or inference, field programmable gate
arrays (“FPGAs”), digital signal processors (“DSPs”) and
any other suitable specific or general purpose processors.
The processor 410 may be implemented as appropriate in
hardware, firmware, or combinations thereof with computer-
executable instructions and/or software. Computer-execut-

US 10,929,392 B1

15

able instructions and software may include computer-ex-
ecutable or machine-executable instructions written in any
suitable programming language to perform the various func-
tions described.

In some examples, the interactive computing system 400
may also include additional storage 412, which may include
removable storage and/or non-removable storage. The addi-
tional storage 412 may include, but is not limited to,
magnetic storage, optical disks, and/or tape storage. The disk
drives and their associated computer-readable media may
provide non-volatile storage of computer-readable instruc-
tions, data structures, program modules, and other data for
the computing devices. The memory 420 and the additional
storage 412, both removable and non-removable, are
examples of computer-readable storage media. For example,
computer-readable storage media may include volatile or
non-volatile, removable, or non-removable media imple-
mented in any suitable method or technology for storage of
information such as computer-readable instructions, data
structures, program modules, or other data. As used herein,
modules, engines, and components, may refer to program-
ming modules executed by computing systems (e.g., pro-
cessors) that are part of the architecture. The interactive
computing system 400 may also include input/output (1/O)
device(s) and/or ports 414, such as for enabling connection
with a keyboard, a mouse, a pen, a voice input device, a
touch input device, a display, speakers, a printer, or other I/O
device.

The interactive computing system 400 may also include a
user interface 416. The user interface 416 may be provided
over the network 404 to user devices 402 and utilized by a
user to access portions of the interactive computing system
400. In some examples, the user interface 416 may include
a graphical user interface, web-based applications, program-
matic interfaces such as application programming interfaces
(“APIs”), or other user interface configurations. The user
interface 416 can be generated as described herein to pro-
vide computer-generated QA pairs on a detail page for a
particular item.

The interactive computing system 400 may also include a
data store 430. In some examples, the data store 430 may
include one or more data stores, databases, data structures,
or the like for storing and/or retaining information associ-
ated with the interactive computing system 400. Thus, the
data store 430 may include data structures, such as an item
data repository 432, offer data repository 434, and seller data
repository 436.

The item data repository 432 comprises one or more
physical data storage devices that stores data representing
the items, including the items being considered for recom-
mendation. In the context of the electronic catalog, item data
can include names, images, brands, prices, descriptions, user
reviews (textual or numerical ratings), category/subcategory
within a hierarchy of browsable categories of the electronic
catalog, high-level category within a general ledger of the
electronic catalog, particular services or subscriptions for
which the item qualifies, and any metadata associated with
specific items of the catalog. The item data repository 432
also stores data representing item information, including the
attributes used to generate input data for the ML techniques
described herein. The catalog service 426 can access elec-
tronic catalog or other item data from item data repository
432.

The trained models data repository 434 comprises one or
more physical data storage devices that stores data repre-
senting the parameters of the models of the multi-task
encoder-decoder model 145. The QA pairs data repository

10

15

20

25

30

35

40

45

50

55

60

65

16

436 comprises one or more physical data storage devices
that stores information regarding generated QA pairs,
including information representing similarity of generated
QA pairs to one another and/or to seller-provided item
description, or diversity of a set of selected QA pairs.

The interactive computing system 400 can communicate
over network 404 with user devices 402. The network 404
can include any appropriate network, including an intranet,
the Internet, a cellular network, a local area network or any
other such network or combination thereof. User devices
402 can include any network-equipped computing device,
for example desktop computers, laptops, smartphones, tab-
lets, e-readers, gaming consoles, and the like. Users can
access the interactive computing system 400 and interact
with items therein via the network 404, and selling partners
can be provided with predictions as described herein via the
network 404.

Terminology

All of the methods and tasks described herein may be
performed and fully automated by a computer system. The
computer system may, in some cases, include multiple
distinct computers or computing devices (e.g., physical
servers, workstations, storage arrays, cloud computing
resources, etc.) that communicate and interoperate over a
network to perform the described functions. Each such
computing device typically includes a processor (or multiple
processors) that executes program instructions or modules
stored in a memory or other non-transitory computer-read-
able storage medium or device (e.g., solid state storage
devices, disk drives, etc.). The various functions disclosed
herein may be embodied in such program instructions, or
may be implemented in application-specific circuitry (e.g.,
ASICs or FPGAs) of the computer system. Where the
computer system includes multiple computing devices, these
devices may, but need not, be co-located. The results of the
disclosed methods and tasks may be persistently stored by
transforming physical storage devices, such as solid-state
memory chips or magnetic disks, into a different state. In
some embodiments, the computer system may be a cloud-
based computing system whose processing resources are
shared by multiple distinct business entities or other users.

The disclosed processes may begin in response to an
event, such as on a predetermined or dynamically deter-
mined schedule, on demand when initiated by a user or
system administer, or in response to some other event. When
the process is initiated, a set of executable program instruc-
tions stored on one or more non-transitory computer-read-
able media (e.g., hard drive, flash memory, removable
media, etc.) may be loaded into memory (e.g., RAM) of a
server or other computing device. The executable instruc-
tions may then be executed by a hardware-based computer
processor of the computing device. In some embodiments,
the process or portions thereof may be implemented on
multiple computing devices and/or multiple processors, seri-
ally or in parallel.

Depending on the embodiment, certain acts, events, or
functions of any of the processes or algorithms described
herein can be performed in a different sequence, can be
added, merged, or left out altogether (e.g., not all described
operations or events are necessary for the practice of the
algorithm). Moreover, in certain embodiments, operations or
events can be performed concurrently, e.g., through multi-
threaded processing, interrupt processing, or multiple pro-
cessors or processor cores or on other parallel architectures,
rather than sequentially.

US 10,929,392 B1

17

The various illustrative logical blocks and modules
described in connection with the embodiments disclosed
herein can be implemented or performed by a machine, such
as a processor device, a DSP, an ASIC, an FPGA, or other
programmable logic device, discrete gate or transistor logic,
discrete hardware components, or any combination thereof
designed to perform the functions described herein. More-
over, the various illustrative logical blocks, modules, rou-
tines, and algorithm steps described in connection with the
embodiments disclosed herein can be implemented as elec-
tronic hardware (e.g., ASICs or FPGA devices), computer
software that runs on computer hardware, or combinations
of both. A processor device can be a microprocessor, but in
the alternative, the processor device can be a controller,
microcontroller, or state machine, combinations of the same,
or the like. A processor device can include electrical cir-
cuitry configured to process computer-executable instruc-
tions. In another embodiment, a processor device includes
an FPGA or other programmable device that performs logic
operations without processing computer-executable instruc-
tions. A processor device can also be implemented as a
combination of computing devices, e.g., a combination of a
DSP and a microprocessor, a plurality of microprocessors,
one or more microprocessors in conjunction with a DSP
core, or any other such configuration. Although described
herein primarily with respect to digital technology, a pro-
cessor device may also include primarily analog compo-
nents. For example, some or all of the rendering techniques
described herein may be implemented in analog circuitry or
mixed analog and digital circuitry. A computing environ-
ment can include any type of computer system, including,
but not limited to, a computer system based on a micropro-
cessor, a mainframe computer, a digital signal processor, a
portable computing device, a device controller, or a com-
putational engine within an appliance, to name a few.

The elements of a method, process, routine, or algorithm
described in connection with the embodiments disclosed
herein can be embodied directly in hardware, in a software
module executed by a processor device, or in a combination
of the two. A software module can reside in RAM memory,
flash memory, ROM memory, EPROM memory, EEPROM
memory, registers, hard disk, a removable disk, a CD-ROM,
or any other form of a non-transitory computer-readable
storage medium. An exemplary storage medium can be
coupled to the processor device such that the processor
device can read information from, and write information to,
the storage medium. In the alternative, the storage medium
can be integral to the processor device. The processor device
and the storage medium can reside in an ASIC. The ASIC
can reside in a user terminal. In the alternative, the processor
device and the storage medium can reside as discrete com-
ponents in a user terminal.

Conditional language used herein, such as, among others,
can,” “could,” “might,” “may,” “e.g.,” and the like, unless
specifically stated otherwise, or otherwise understood within
the context as used, is generally intended to convey that
certain embodiments include, while other embodiments do
not include, certain features, elements or steps. Thus, such
conditional language is not generally intended to imply that
features, elements or steps are in any way required for one
or more embodiments or that one or more embodiments
necessarily include logic for deciding, with or without other
input or prompting, whether these features, elements or steps
are included or are to be performed in any particular
embodiment. The terms “comprising,” “including,” “hav-
ing,” and the like are synonymous and are used inclusively,
in an open-ended fashion, and do not exclude additional

113

10

15

20

25

30

35

40

45

50

55

60

65

18

elements, features, acts, operations, and so forth. Also, the
term “or” is used in its inclusive sense (and not in its
exclusive sense) so that when used, for example, to connect
a list of elements, the term “or” means one, some, or all of
the elements in the list.
Disjunctive language such as the phrase “at least one of X,
Y, or Z,” unless specifically stated otherwise, is otherwise
understood with the context as used in general to present that
an item, term, etc., may be either X, Y, or Z, or any
combination thereof (e.g., X, Y, or Z). Thus, such disjunctive
language is not generally intended to, and should not, imply
that certain embodiments require at least one of X, at least
one of Y, and at least one of Z to each be present.
While the above detailed description has shown,
described, and pointed out novel features as applied to
various embodiments, it can be understood that various
omissions, substitutions, and changes in the form and details
of the devices or algorithms illustrated can be made without
departing from the scope of the disclosure. As can be
recognized, certain embodiments described herein can be
embodied within a form that does not provide all of the
features and benefits set forth herein, as some features can
be used or practiced separately from others. All changes
which come within the meaning and range of equivalency of
the claims are to be embraced within their scope.
What is claimed is:
1. A system comprising:
a memory storing instructions for implementing a
machine learning (ML) system trained to generate
question and answer pairs, wherein the ML system
comprises a shared encoder, a question decoder, and an
answer decoder; and
one or more processors in communication with the
memory, the one or more processors configured by the
instructions to at least:
identify a seed sentence describing an item represented
in an electronic catalog;

generate a hidden state representation of the seed
sentence at least partly by forward passing data
representing the seed sentence through the shared
encoder;

generate a question about the item at least partly by
forward passing the hidden state representation of
the seed sentence through the question decoder;

extract a hidden state representation of the question
from the question decoder;

combine the hidden state representation of the seed
sentence with the hidden state representation of the
question;

generate an answer to the question at least partly by
forward passing the combined hidden state represen-
tation of the seed sentence with the hidden state
representation of the question through the answer
decoder; and

update a user interface depicting information about the
item with the question and the answer.

2. The system of claim 1, wherein the shared encoder, the
question decoder, and the answer decoder comprise bi-
directional long short-term memory neural networks.

3. The system of claim 1, wherein the shared encoder, the
question decoder, and the answer decoder are trained by
alternately minimizing losses for question and answer out-
puts.

4. The system of claim 1, wherein the one or more
processors are configured by the instructions to at least
identify the seed sentence from a customer-generated review
of the item.

US 10,929,392 B1

19

5. A computer-implemented method comprising:

identifying media describing an item;

providing data representing the media as input into a

machine learning (ML) encoder model to generate an
embedding of the media;

generating a question about the item at least partly by

passing the embedding of the media through a ML
question decoder model;

extracting an embedding of the question from the ML

question decoder model;

combining the embedding of the media with the embed-

ding of the question to generate an answer decoder
model input;

generating an answer to the question at least partly by

passing the answer decoder model input through a ML,
answer decoder model; and

updating a user interface depicting information about the

item with at least the question.
6. The computer-implemented method of claim 5,
wherein the media comprises text from a customer review of
the item, the computer-implemented method further com-
prising identifying the text from among a plurality of
customer reviews of the item based at least partly on
similarity between the text and a description of the item.
7. The computer-implemented method of claim 5, further
comprising:
identifying a plurality of textual descriptions from among
a plurality of customer reviews of the item; and

generating a plurality of question and answer pairs by
generating a question and answer pair for each of the
plurality of textual descriptions using the ML encoder
model, the ML question decoder model, and the ML
answer decoder model.

8. The computer-implemented method of claim 7, further
comprising:

clustering the plurality of question and answer pairs into

a plurality of clusters based on similarity between at
least questions of the plurality of question and answer
pairs; and

selecting the question and the answer from a largest one

of the plurality of clusters.

9. The computer-implemented method of claim 8, further
comprising computing the similarity based on subword
embeddings of the questions.

10. The computer-implemented method of claim 7, fur-
ther comprising selecting a set of question and answer pairs
from among the plurality of question and answer pairs based
on a level of diversity of at least the questions in the set.

11. The computer-implemented method of claim 10, fur-
ther comprising computing the level of diversity based on
subword embeddings of the questions.

12. The computer-implemented method of claim 7, fur-
ther comprising selecting a set of question and answer pairs
from among the plurality of question and answer pairs based
on at least two of the question and answer pairs in the set
having different answers.

13. A non-transitory computer-readable medium compris-
ing computer-executable instructions that, when executed on
a computing system, cause the computing system to perform
operations comprising:

10

15

20

25

30

35

40

45

50

55

20

identifying media describing an item;

providing data representing the media as input into an

encoder model,;

generating a question about the item at least partly by

passing an output of the encoder model through a
question decoder model trained to reflect questions and
their corresponding answers;

extracting a representation of the question from the ques-

tion decoder model;
generating an input that comprises the output of the
encoder model and the representation of the question;

generating an answer to the question at least partly by
passing the input through an answer decoder model;
and

updating a user interface depicting information about the

item with at least the question.
14. The non-transitory computer-readable medium of
claim 13, the operations further comprising providing a
voting mechanism associated with the question in the user
interface.
15. The non-transitory computer-readable medium of
claim 14, the operations further comprising retraining the
encoder model and the question decoder model based on
user feedback on the question provided via the voting
mechanism.
16. The non-transitory computer-readable medium of
claim 13, the operations further comprising:
identifying a plurality of textual descriptions from among
a plurality of customer reviews of the item; and
generating a plurality of different questions by passing
each of the plurality of textual descriptions through the
encoder model and the question decoder model.
17. The non-transitory computer-readable medium of
claim 16, the operations further comprising:
clustering the plurality of different questions into a plu-
rality of clusters based on similarity between embed-
ding representations of the different questions; and

selecting the question from a largest one of the plurality
of clusters.

18. The non-transitory computer-readable medium of
claim 16, the operations further comprising selecting a set of
questions from among the plurality of different questions
based on a level of diversity of the different questions in the
set.

19. The non-transitory computer-readable medium of
claim 13, the operations further comprising training the
encoder model, the question decoder model, and the answer
decoder model, wherein the answer decoder model is con-
figured to generate answers for generated questions by
alternately minimizing losses for question and answer out-
puts.

20. The non-transitory computer-readable medium of
claim 19, further comprising identifying a training data
triplet including media from a customer review as input and
the question and answer outputs based on a computed level
of similarity between the media and both of the question and
answer outputs.

