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Abstract

In this paper, we propose a novel method for two types of ranking problems that

have recently been introduced in the context of preference learning, an emerging

subfield of machine learning. In the literature, these problems are referred to, re-

spectively, as object ranking and multipartite ranking. In both cases, the task is to

learn a ranking model that accepts as input a subset of alternatives, with each alter-

native typically represented in terms of a feature vector, and produces a ranking of

these alternatives as output. Our approach is based on the idea of using the (dis-

crete) Choquet integral as an underlying model for representing rankings. Being an

established aggregation function in multiple criteria decision making and informa-

tion fusion, the Choquet integral offers a number of interesting properties that render

it attractive from a machine learning perspective, too. The learning problem itself,

which comes down to properly specifying the fuzzy measure on which the Choquet

integral is defined, is formalized as a margin maximization problem. For testing the

performance of our method, we apply it to a real problem, namely the ranking of

scientific journals.

1 Introduction

Preference learning is an emerging subfield of machine learning that has received in-

creasing attention in recent years [1]. Roughly speaking, the goal in preference learning

is to induce preference models from observed data revealing information about the pref-

erences of an individual or a group of individuals in a direct or indirect way; these models

are then used to predict the preferences in a new situation. In this regard, predictions

in the form of rankings, i.e., total orders of a set of alternatives, constitute an important

special case [2–6]. A ranking can be seen as a specific type of structured output [7], and
compared to conventional classification and regression functions, models producing such

outputs require a more complex internal representation.

In this paper, we propose novel methods for two types of ranking problems, using the

(discrete) Choquet integral [8] as an underlying model for representing rankings. The

Choquet integral is an established aggregation function that has been used in various

fields of application, including multiple criteria decision making and information fusion.

It can be seen as a generalization of the weighted arithmetic mean that is not only able to

capture the importance of individual features but also information about the redundancy,

complementarity and interaction between different features. Moreover, it obeys certain

monotonicity properties in a rather natural way. Due to these properties, the Choquet

integral appears to be very appealing for preference learning, especially for aggregat-

ing the evaluation of individual features in the form of interacting criteria. The learning
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problem itself comes down to specifying the fuzzy measure underlying the definition of

the Choquet integral in the most suitable way. In this regard, we explore connections to

kernel-based machine learning methods [9].

We develop learning algorithms for two types of problems that have been referred to,

respectively, as object ranking and multipartite ranking in the literature [2, 6]. In both

cases, the task is to learn a ranking model that accepts as input an arbitrary set of alterna-

tives, with each alternative typically represented in terms of a feature vector, and produces

a ranking of these alternatives as output. The main difference concerns the training in-

formation, which is given in the form of absolute judgments in multipartite ranking and

relative judgments in object ranking. More specifically, it consists of a set of evaluated

alternatives in the former case, rated in terms of preference degrees on an ordinal scale

(such as bad, good, very good), and of a set of pairwise comparisons between alternatives

in the second case (suggesting that one alternative is preferred to another one).

For testing the performance of our methods, we apply them to a real problem, namely the

ranking of scientific journals based on various properties and indicators, such as impact

factor. A corresponding data set will not only be used to compare our methods with ex-

isting approaches in terms of predictive performance but also to highlight the advantages

of the Choquet integral from a modeling and knowledge representation point of view.

The rest of this paper is organized as follows. In the next section, we give a brief overview

of related work. In Section 3, we recall the basic definition of the Choquet integral and

related notions. The ranking problems we are dealing with are explained in Section 4, and

our approach for tackling them is introduced in Section 5. Finally, some first experimental

results are presented in Section 6.

2 Related Work

Although the Choquet integral has been widely applied as an aggregation operator in mul-

tiple criteria decision making [10–12], it has been used much less in the field of machine

learning so far. There are, however, a few notable exceptions.

First, the problem of extracting a Choquet integral (or, more precisely, the non-additive

measure on which it is defined) in a data-driven way has been addressed in the literature.

Essentially, this is a parameter identification problem, which is commonly formalized as

a constraint optimization problem, for example using the sum of squared errors as an

objective function [13, 14]. To this end, a heuristic, gadient-based method called HLMS

(Heuristic Least Mean Squares) was introduced in [15], while [16] proposed an alternative

approach based on the use of quadratic forms. Besides, genetic algorithms have been

used as a tool for parameter optimization [17]. Some mathematical results regarding this

optimization problem can be found in [18, 19].

Second, the Choquet integral has been used in a few works for learning classification

models. Recently, for example, it has been used for ordinal classification [20,21]. In [22],

the problem of learning an optimal classification function is cast in the setting of margin-

maximization. Although the learning problem is different, this approach is especially

relevant for us, since we shall employ quite similar techniques (cf. Section 5).

Proc., 20. Workshop Computational Intelligence, 2010 - S. 120



3 The Discrete Choquet Integral

In this section, we recall the basic definition of the Choquet integral and related notions.

The first definition of the Choquet integral for additive measures is due to Vitali [23]. For

the general case of a capacity (i.e., a non-additive measure or fuzzy measure), it was later

on introduced by Choquet [24]. Yager proposed a generalized version in [25].

Definition 1 (Fuzzy measure) Let X = {x1, x2, . . . , xn} be a finite set. A discrete fuzzy
measure (also called capacity) is a set function μ : 2X → [0, 1] which is monotonic
(μ(A) ≤ μ(B) for A ⊆ B ⊆ X) and normalized (μ(∅) = 0 and μ(X) = 1). A fuzzy
measure μ is called additive if μ(A ∪ B) = μ(A) + μ(B) for all A,B ⊆ X such that
A ∩ B = ∅. Obviously, in the case of an additive measure, μ(A) is simply obtained as
follows:

μ(A) =
∑
i∈A

μ({i}) (1)

Definition 2 (Choquet integral) Let μ be a fuzzy measure on X = {x1, x2, . . . , xn}.
The discrete Choquet integral of a function f : X → R+ with respect to μ is defined as
follows:

Cμ(f) =
n∑

i=1

(
f(x(i))− f(x(i−1))

) · μ(A(i)) ,

where (·) is a permutation of {1, . . . , n} such that 0 ≤ f(x(1)) ≤ f(x(2)) ≤ . . . ≤ f(x(n)).
Moreover, A(i) is given by the set {x(i), . . . , x(n)}. Finally, f(x(0)) = 0 by definition.

Definition 3 (Möbious transform) The Möbius transform mμ of a fuzzy measure μ is
defined as follows:

mμ(A) =
∑
B⊆A

(−1)|A|−|B|μ(B)

for all A ⊆ X .

As a useful property of the Möbius transform, that we shall exploit later on for learn-

ing Choquet integrals, we mention that is allows for reconstructing the underlying fuzzy

measure:

μ(B) =
∑
A⊆B

m(A)

for all B ⊆ X . More specifically, we shall make use of the following representation of

the Choquet integral:

Cμ(f) =
n∑

i=1

(
f(x(i))− f(x(i−1))

) · μ(A(i))

=
n∑

i=1

f(x(i))(μ(A(i))− μ(A(i+1)))

=
n∑

i=1

f(x(i))
∑

R⊆T(i)

m(R)

=
∑
T⊆X

m(T )× min
(i)∈T

f(x(i)) (2)
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where T(i) = {S ∪ {(i)} |S ⊆ {(i+ 1), . . . , (n)}}.

Definition 4 (k-Additivity) A fuzzy measure μ is said to be k-order additive or simply
k-additive if k is the smallest integer such that m(A) = 0 for all A ⊆ X with |A| > k.

Thus, while a Choquet integral is determined by 2n coefficients in general, the k-additivity
of the underlying measure reduces the number of required coefficients to at most

k∑
i=1

(
n
i

)
.

The (discrete) Choquet integral is often used as an aggregation operator, namely to aggre-

gate the assessments f(xi) of an object on different criteria xi into a single evaluation. If

the underlying measure μ is additive (i.e., k-additive with k = 1), the Choquet integral

reduces to a linear aggregation

Cμ(f) =
n∑

i=1

wi · f(xi) ,

with wi = μ({xi}) the weight or, say, the importance of the criterion xi. Besides, in

this case, there is obviously no interaction between the criteria xi, i.e., the influence of

evaluation f(xi) on the overall assessment is independent of the other values f(xj), j �= i.

Measuring the importance of a criterion xi becomes obviously more involved if μ is non-

additive. Besides, one may then also be interested in a measure of interaction between the

criteria, either pairwise or even of a higher order. In the literature, measures of that kind

have been proposed, both for the importance of single as well as the interaction between

several criteria.

Given a fuzzy measure μ onX , the Shaply value (or importance index) of xi is defined as

follows:

ϕ(xi) =
∑

A⊆X\{xi}

1

n

(
n− 1
|A|

) (μ(A ∪ {xi})− μ(A))

The Shaply value of μ is the vector ϕ(μ) = (ϕ(1), . . . , ϕ(n)). One can show that 0 ≤
ϕ(xi) ≤ 1 and

∑n
i=1 ϕ(xi) = 1. Thus, ϕ(xi) is a measure of the relative importance of

xi. Obviously, ϕ(xi) = μ({xi}) if μ is additive.

The interaction index between criteria xi and xj , as proposed by Murofushi and Soneda

[26], is defined as follows:

I(xi, xj) =
∑

A⊆X\{xi,xj}

μ(A ∪ ({xi, xj})− μ(A ∪ ({xi}))− μ(A ∪ ({xj}) + μ(A)

(n− 1)

(
n− 2
|A|

)

This index ranges between −1 and 1 and indicates a positive (negative) interaction be-

tween criteria xi and xj if I(xi, xj) > 0 (I(xi, xj) < 0).

Interestingly, the Shaply value can also be expressed in terms of the interaction index:

ϕ(xi) = m({xi}) + 1

2

∑
xj∈X\{xi}

I(xi, xj)
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4 Multipartite and Object Ranking

As mentioned earlier, different types of ranking problems have recently been studied in

the machine learning literature. Here, we are specifically interested in so-called object
ranking andmultipartitle ranking. In both problems, the goal is to learn a ranking function
that accepts a subset O ⊂ O of objects as input, and produces as output a ranking (total

order) 
 of these objects. Typically, a ranking function of that kind is implemented by

means of a scoring function U : O→ R, so that

o 
 o′ ⇔ U(o) ≥ U(o′)

for all o,o′ ∈ O. Obviously, U(o) can be considered as a kind of utility degree assigned

to the object o ∈ O. Seen from this point of view, the goal in object and multipartite

ranking is to learn a latent utility function on a reference setO. In the following, we shall

also refer to U(·) itself as a ranking function. Moreover, we assume that this function

produces a strict order relation �, i.e., that ties U(o) = U(o′) do either not occur or are

broken at random.

The difference between the two problems is the type of training data available for learning

such a function, and the way in which a prediction is evaluated. In object ranking, the

ground truth is supposed to be a total order�∗ onO, and training data consists of pairwise

preferences of the form oi � oj . Given a new set of objectsO to be ranked, the predicted

order � is then compared with the true order �∗ (restricted to O). This can be done, for

example, by means of a rank correlation measure such as Kendall’s tau [27].

In multipartite ranking, the ground truth is supposed to be an ordinal categorization of the

objects. That is, each object o ∈ O belongs to one of the classes in L = {λ1, λ2, . . . , λk}.
Correspondingly, training data consists of labeled objects (oi, �i) ∈ O×L. Assuming that

the classes are sorted such that λ1 < λ2 < . . . < λk, the goal is to learn a ranking function

U(·) that agrees well with this sorting in the sense that objects from higher classes are

ranked higher than objects from lower classes. In [6], it was proposed to use the so-called

C-index as a suitable performance measure:

C(U,O) =
1∑

i<j |Oi| · |Oj|
∑

1≤i<j≤k

∑
(o,o′)∈Oi×Oj

S(U(o), U(o′))

where Oi is the subset of objects o ∈ O whose true class is λi and

S(u, v) =

{
1 u < v
0 u > v

(3)

indicates whether or not a pair of objects has been ranked correctly.

5 Learning to Rank using the Choquet Integral

The idea of our approach is to represent the latent utility function U(·) in terms of a

Choquet integral. Assuming that objects o ∈ O are represented as feature vectors

fo = (fo(x1), . . . , fo(xn)) ,
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where fo(xi) can be thought of as the evaluation of object o on the criterion xi, this means

that

U(o) = Cμ(fo) . (4)

This approach appears to be interesting for a number of reasons, notably the following:

• The representation (4) covers the commonly used linear utility functions as a special

case.

• Generalizing beyond the linear case, however, it is also able to capture more com-

plex, non-linear dependencies and interactions between criteria.

• The Choquet integral offers various means for explaining and understanding a util-

ity function, including the importance value and the interaction index.

• As opposed to many other models used in machine learning, the Choquet integral

guarantees monotonicity in all criteria. This is a reasonable property of a utility

function which is often required in practice.

We assume training data to be available in the form of a set of objects {o1, . . . ,oN} ⊂ O,

together with their feature representations foi
(i = 1, . . . , N) and a subset D of pairwise

preferences between these objects; each pairwise preference is represented by a tuple

(oi,oj) ∈ D, suggesting that oi � oj . While these preferences are given directly in

the case of object ranking, they can be derived from the class information in the case

of multipartite ranking: (oi,oj) ∈ D if the original training data contains (oi, �i) and
(oj, �j), and �i > �j .

Following the idea of empirical risk minimization [9], we seek to induce a Choquet in-

tegral that minimizes the number of ranking errors (3) on the training data D. Since the

Choquet integral is uniquely identified by the underlying measure μ on the set of criteria

X = {x1, . . . , xn}, this comes down to defining this measure in a most suitable way. In

this regard, we make use of the representation (2) of μ in terms of its Möbius transform.

Inspired by the maximum margin principle in kernel-based machine learning [9], we for-

mulate the problem of learning μ as an optimization problem:

max
M,ξ1,...,ξN

⎧⎨
⎩M − γ

|D|
∑

(os,ot)∈D
ξs + ξt

⎫⎬
⎭

s.t.

Cμ(fos)− Cμ(fot) > M − ξs − ξt ∀(os,ot) ∈ D

ξs ≥ 0 ∀s ∈ {1, . . . , N}
∑
T⊆X

m(T ) = 1

∑
B⊆A

m(B) ≥ 0 ∀A ⊆ X

∑
L⊆A

m(L) ≤
∑
K⊆B

m(K) ∀A ⊂ B ⊆ X
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In this problem, M denotes the margin to be maximized, that is, the smallest difference

between the utility degrees of two training objects os and ot with os � ot. More specif-

ically, M is a soft margin: Accounting for the fact that it will generally be impossible to

satisfy all inequalities simultaneously, each object os is associated with a slack variable

ξs. The slack variables are non-negative, and a positive slack is penalized in proportion

to its size. Finally, γ is a trade-off parameter that controls the flexibility of the model; the

higher γ, the stronger the slacks are punished.

The last three constraints formalize, respectively, the normalization, non-negativity and

monotonicity of the Möbius transform. Obviously, the non-negativity and monotonicity

conditions are quite costly and produce as many as 3n − 2n constraints, since each subset

of X is compared with all its subsets:

n∑
i=1

(
n
i

)
(2i − 1) =

n∑
i=1

(
n
i

)
2i −

n∑
i=1

(
n
i

)
= 3n − 2n

Fortunately, the last two constraints can be represented in a more compact way, exploiting

a transitivity property:∑
B⊆A\{xi}

m(B ∪ {xi}) ≥ 0 ∀A ⊆ X, xi ∈ X

This representation reduces the number of constraints to n2n, which, despite still being

large, is a significant reduction in comparison to the original formulation.

Another way of reducing complexity is to restrict the class of fuzzy measures to k-additive
measures, that is, settingm(A) = 0 for all A ⊆ X with |A| > k. In fact, choosing a k �
n is not only interesting from an optimization but also from a learning point of view: Since

the degree of additivity of μ offers a way to control the capacity of the underlying model

class, selecting a proper k is crucial in order to guarantee the generalization performance

of the learning algorithm. More specifically, the larger k is chosen, the more flexibly the

Choquet integral can be fitted to the data. Thus, choosing k too large comes along with a

danger of overfitting the data.

6 Experimental Results

We conucted experiments using a data set that classifies 172 scientific journals in the field

of pure mathematics into categoriesA∗,A,B andC [21]. Each journal is moreover scored

in terms of 5 criteria, namely

• cites: the total number of citations per year;

• IF: the well-known impact factor (average number of citations per article within

two years after publication);

• II: the immediacy index measures how topical the articles published in a journal are

(cites to articles in current calendar year divided by the number of articles published

in that year);

• articles: the total number of articles published;

• half-line: cited half-life (median age of articles cited).
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6.1 Comparison with Linear and Polynomial Kernel Methods

In a first study, we compared our approach with kernel-based methods for ranking, using

the RankSVM approach with a linear and a polynomial kernel [28]. A comparison with

this class of methods is interesting for several reasons. First, kernel-based methods belong

to the state-of-the-art in the field of learning to rank. Second, they make use of the same

type of learning algorithm (large margin maximization). Third, the use of a polynomial

kernel leads to a model that bears some resemblence with a Choquet integral. In fact,

using a polynomial kernel of degree k on the original feature representation of objects,

i.e., a kernel of the form

K(o,o′) = (〈fo, fo′〉+ λ)k , (5)

essentially comes down to fitting a linear model in an expanded feature space, in which

the original features f(x1), . . . , f(xn) are complemented by all monomials of order ≤ k.
Thus, a polynomial kernel of degree k captures the same interactions between criteria as

a Choquet integral on a k-additive fuzzy measure.

We use an experimental setup that randomly splits the data into two parts, one half for

training and one half for testing. From the training data, a total number of T object

pairs is sampled, and the corresponding preferences are used for training. The model

induced from this training data is then evaluated on the test data, using the C-index as a

performance measure. This procedure is repeated 100 times, and the results are averaged.

100 200 300 400 500 600
0.15

0.16

0.17

0.18

0.19

0.2

Number of pairwise comparisons

C
−

in
de

x

 

 

Linear Model
Polynomial Kernel d=2, λ=1
Choquet Integral

Figure 1: Average test accuracy for Choquet intregral, the linear model and the polyno-

mial kernel of order 2.

Fig. 1 shows the average accuracy of the Choquet integral1, the linear model and the

polynomial kernel (5) with parameters k = 2 and λ = 1 as a function of the size T of the

training set. As can be seen, the linear model performs the worst, suggesting the presence

of important interactions between criteria. The kernel method is slightly better, but the

best results are obtained by the Choquet integral.

6.2 Choquet Integral on k-Additive Fuzzy Measures

In a second experiment, we applied the Choquet integral with k-additive fuzzy measures,

varying the value of k from 1 to 5. As can be seen in Fig. 2, there is a significant increase

1The trade-off parameter γ was set to 1.
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cites IF II articles half-life

0.0989 0.1643 0.5379 0.0984 0.1006

Table 1: Importance of criteria in terms of the Shaply value.

in performance when going from k = 1 (the linear model) to k = 2. Increasing k beyond

the value 2, however, does not seem to be beneficial.
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k=2
k=3
k=4
k=5

Figure 2: Performance of the Choquet integral on a k-additive fuzzy measure.

6.3 Importance of Criteria and Interaction

As mentioned before, the Choquet integral does also offer interesting information about

the importance of individual criteria and the interaction between them. In fact, in many

practical applications, this type of information is at least as important as the predictive

accuracy of the model.

Table 1 shows the importance of the five criteria in terms of the Shaply value. As can be

seen, the immediacy index and the impact factor seem to have the strongest impact on the

assessment of a journal, which is hardly surprising. However, the weight of the former is

even much higher than the weight of the latter, which is arguably less expected.

Table 2 shows the measures of pairwise interaction between the criteria. Interestingly, the

interaction is positive throughout, i.e., there seems to be a kind of synergy between each

pair of criteria. Moreover, while the degree of interaction is in general quite comparable

accross all pairs of criteria, it is again maximal for the impact factor and immediacy index.

7 Summary and Conclusions

In this paper, we have advocated the use of the discrete Choquet integral in the context of

preference learning. More specifically, we have used the Choquet integral for representing

a latent utility function in two types of ranking problems, namely object ranking and
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IF II articles half-line

cites 0.24 0.26 0.34 0.29

IF 0.40 0.32 0.24

II 0.26 0.26

articles 0.29

Table 2: Pairwise interaction between criteria.

multipartite ranking. This idea is motivated by several appealing properties offered by

the Choquet integral, including its ability to capture dependencies between criteria and to

obey natural monotonicity conditions, as well as its interpretability.

Algorithmically, our approach is inspired by large margin methods that have been devel-

oped in the field of kernel-based machine learning. First experimental studies, in which

we applied this approach to a journal ranking data set and compared it to a kernel-based

ranking method, are quite promising.

Needless to say, this study is only a first step and should be complemented by more exten-

sive experiments including diverse types of data sets. Another problem to be addressed

in future work concerns the (soft) margin maximization problem. In fact, due to the large

number of constraints that have to be satisfied, this problem may become computation-

ally complex. Dedicated techniques for solving it in a more efficient way are therefore

desirable.
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