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(1) Introduction
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Keyphrase extraction aims to find a collection of phrases in a document that
provides a concise summary of the text content.

* Inputs: a text document
* Qutputs: a set/ranking of phrases

* Evaluation is done by comparing to human annotated keyphrases via
measures such as precision, recall, F score, etc.

(2) Overview
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An automatic keyphrase extraction system typically operates in 2 steps:

1. Extract a list of phrases as candidate phrases with some heuristics.
* Noun phrases with (adjective) * (noun) +
* Phrases that don’t contain predefined stopwords
e etc.

2. Select keyphrases from these candidates with supervised or unsupervised
approaches.

e Supervised: binary classification (frank etal. 1999), pairwise ranking (iang et al. 2009)

* Unsupervised: graph-based ranking (mihalcea & Tarau, 2004), topic-based
Clustering (Grineva et al., 2009), Ianguage modeling (Tomokiyo & Hurst, 2003)
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Concrete Procedure:

* Given a word graph G = (W, E), where an edge e(wi, Wj) indicates relatedness
between w; and w;, the score of each word w; under topic t € T is determined by
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where Out(w;) = ).;. Wi—W e(wi, Wj) is the outdegree of vertex w;, and
p(t | w;) is a topic specific jump probability of w;, derived from LDA.

* Then for topic t, we obtain keyphrase scores R;(phrase) = Zwiephrase R;:(w;).

* The final keyphrase scores are given by R(phrase) = ), R;(phrase) p(t | d).

(4) Salience Rank

Performance: While still exploiting the structure information derived by LDA, we run
PageRank once instead of K times and achieve similar keyphrase quality.

Configurability: Users can balance topic specificity and corpus specificity of the
extracted keyphrases and can tune the results according to particular use cases.

* On one hand, we aim to extract keyphrases that are relevant to specific topics;

* On the other hand, the extracted keyphrases as a whole should have a good
coverage of the major topics in the document.

* It is often useful to control the balance between these two competing principles.

Definitions:

p(t|w)
p(t)

* The topic specificity of aword w: TS(w) = Y..erp(t | w) log

* The corpus specificity of a word w: CS(w) = p(w | corpus)

e The salience of aword w: S(w) = (1 — a) CS(w) + a TS(w), where « is the
tradeoff parameter balancing corpus and topic specificity of w.

Our random walk:
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Comparing to TPR, PageRank needs to be run only once.

(5) Experiments

dataset algorithm precision recall F score

C00news TPR 0.254 0.222 0.229 (+0.010)
SR 0.253 0.222 0.229 (+0.010)

Inspec TPR 0.225 0.255 0.227 (x0.007)
SR 0.265 0.298 0.266 (+0.007)

* In terms of performance, while computationally more efficient, Salience Rank obtains

comparable or better keyphrases on benchmark data.

o precision recall F score
1.0 0.247 0.216 0.223 (+0.011)
0.7 0.248 0.216 0.223 (£0.011) 500news
0.4 0.248 0.217 0.224 (+0.011)
0.1 0.254 0.222 0.229 (£0.010)
0.0 0.248 0.217 0.224 (+0.011)
Unique top keyphrases when a = 0 Unique top keyphrases whena = 1
classical mathematical formalization individual interests
preferences group interests onone
theory artificial social systems Inspec
options individual rationality abstract
function conditional preference relationships

multiple agent settings Neumann-Morgenstern theory

* |n terms of configurability: (1) Balancing TS and CS considerably impacts results; (2)
Qualitatively, high CS tends to be good for a layman and high TS good for an expert.

(6) Conclusions

We proposed an unsupervised keyphrase extraction algorithm, Salience Rank, that
improves the state-of-the-art.

* Performance: While still exploiting the structure information derived by LDA, we
run PageRank only once and obtain similar or better keyphrases.

e Configurability: Users can balance topic specificity and corpus specificity of the
extracted keyphrases and can tune the results according to use cases.
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