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Salience	Rank
Efficient	Keyphrase	Extraction	with	Topic	Modeling

Keyphrase	extraction	aims	to	find	a	collection	of	phrases	in	a	document	that	
provides	a	concise	summary	of	the	text	content.	

• Inputs:	a	text	document

• Outputs:	a	set/ranking	of	phrases
• Evaluation is	done	by	comparing	to	human	annotated	keyphrases	via	
measures	such	as	precision,	recall,	F	score,	etc.

An	automatic	keyphrase	extraction	system	typically	operates	in	2	steps:

1. Extract	a	list	of	phrases	as	candidate	phrases with	some	heuristics.
• Noun	phrases	with	(adjective)*(noun)+
• Phrases	that	don’t	contain	predefined	stopwords
• etc.

2. Select	keyphrases	from	these	candidates	with	supervised or	unsupervised
approaches.
• Supervised:	binary	classification (Frank	et	al.	1999),	pairwise	ranking (Jiang	et	al.	2009)

• Unsupervised:	graph-based	ranking (Mihalcea &	Tarau,	2004),	topic-based	
clustering	(Grineva et	al.,	2009),	language	modeling	(Tomokiyo &	Hurst,	2003)
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Intuition:	A	candidate	keyphrase	is	important	
if	it	is	related	to	other	candidates,	which	in	
turn	also	have	high	importance.	

Overall	Procedure:
1. Build	a	word	graph	from	input	document.
2. Perform	random	walk	to	obtain	word	

scores.
3. Select	keyphrases	with	word	scores.

(Liu et al., 2010)

Concrete	Procedure:

• Given	a	word	graph 𝐺 = (𝑊, 𝐸),	where	an	edge	𝑒 𝑤*, 𝑤+ indicates	relatedness	
between	𝑤* and	𝑤+,	the	score	of	each	word	𝑤* under	topic	𝑡 ∈ 𝑇 is	determined	by

𝑅0 𝑤* = 𝜆	 3
𝑒 𝑤*, 𝑤+
𝑂𝑢𝑡 𝑤+

�

+:	89	→	8;

𝑅0 𝑤+ + 1 − 𝜆 	𝑝 𝑡	 	𝑤* 	,

• where	𝑂𝑢𝑡 𝑤* = ∑ 𝑒 𝑤*, 𝑤+�
*:	8;→89 is	the	outdegree of	vertex	𝑤*, and	

𝑝 𝑡	 	𝑤* 	is	a	topic	specific	jump	probability	of	𝑤*,	derived	from	LDA.
• Then	for	topic	𝑡,	we	obtain	keyphrase	scores	𝑅0 phrase = ∑ 𝑅0(𝑤*)�

8;∈GHIJKL .

• The	final	keyphrase	scores	are	given	by 𝑅 phrase = ∑ 𝑅0 phrase 	𝑝 𝑡	 	d)�
0∈N .

Performance:	While	still	exploiting	the	structure	information	derived	by	LDA,	we	run	
PageRank	once	instead	of	K	times	and	achieve	similar	keyphrase	quality.

Configurability:	Users	can	balance	topic	specificity and	corpus	specificity of	the	
extracted	keyphrases	and	can	tune	the	results	according	to	particular	use	cases.

• On	one	hand,	we	aim	to	extract	keyphrases	that	are	relevant	to	specific	topics;
• On	the	other	hand,	the	extracted	keyphrases	as	a	whole	should	have	a	good	
coverage	of	the	major	topics in	the	document.	

• It	is	often	useful	to	control	the	balance	between	these	two	competing	principles.	

Definitions:

• The	topic	specificity of	a	word	𝑤:	𝑇𝑆 𝑤 = 	∑ 𝑝 𝑡	 	𝑤)	log S 0	 	8)
S(0)

�
0∈T

• The	corpus	specificity	of	a	word	𝑤:	𝐶𝑆 𝑤 = 𝑝 𝑤	 	corpus)
• The	salience of	a	word	𝑤:	𝑆 𝑤 = 1 − 𝛼 	𝐶𝑆 𝑤 + 𝛼	𝑇𝑆 𝑤 , where	𝛼 is	the	
tradeoff	parameter	balancing	corpus	and	topic	specificity	of	𝑤.

Our	random	walk:

𝑅 𝑤* = 𝜆	 3
𝑒 𝑤*, 𝑤+
𝑂𝑢𝑡 𝑤+

�

+:	89	→	8;

𝑅 𝑤+ + 1 − 𝜆 	𝑆 𝑤*

• Comparing	to	TPR,	PageRank	needs	to	be	run	only	once.

dataset algorithm precision recall F	score

500news TPR 0.254 0.222 0.229	(±0.010)
SR 0.253 0.222 0.229	(±0.010)

Inspec TPR 0.225 0.255 0.227	(±0.007)
SR 0.265 0.298 0.266	(±0.007)

• In	terms	of	performance,	while	computationally	more	efficient,	Salience	Rank	obtains	
comparable	or	better	keyphrases on	benchmark	data.	

𝛂 precision recall F	score
1.0 0.247 0.216 0.223	(±0.011)
0.7 0.248 0.216 0.223	(±0.011)
0.4 0.248 0.217 0.224	(±0.011)
0.1 0.254 0.222 0.229	(±0.010)
0.0 0.248 0.217 0.224	(±0.011)

Unique	top	keyphrases	when	𝜶 = 𝟎 Unique	top	keyphrases	when 𝜶 = 𝟏
classical	mathematical	formalization individual	interests

preferences group	interests
theory artificial	social	systems
options individual	rationality
function conditional	preference	relationships

multiple	agent	settings Neumann-Morgenstern	theory

• In	terms	of	configurability:	(1)	Balancing	TS	and	CS	considerably	impacts	results;	(2)	
Qualitatively,	high	CS	tends	to	be	good	for	a	layman	and	high	TS	good	for	an	expert.		
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We	proposed	an	unsupervised	keyphrase	extraction	algorithm,	Salience	Rank,	that	
improves	the	state-of-the-art.	

• Performance:	While	still	exploiting	the	structure	information	derived	by	LDA,	we	
run	PageRank	only	once	and	obtain	similar	or	better	keyphrases.

• Configurability:	Users	can	balance	topic	specificity and	corpus	specificity of	the	
extracted	keyphrases	and	can	tune	the	results	according	to	use	cases.

Applications:

• Frontend	features

• Backend	features
• Improving	internal/external	search	
• Personalization
• etc.
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