(1) Introduction

Keyphrase extraction aims to find a collection of phrases in a docun provides a concise summary of the text content.

- **Inputs**: a text document
- **Outputs**: a set/ranking of phrases
- Evaluation is done by comparing to human annotated keyphr measures such as *precision*, *recall*, *F* score, etc.

(4) Salience Rank

Performance: While still exploiting the structure information derived by PageRank once instead of K times and achieve similar keyphrase quality.

Configurability: Users can balance topic specificity and corpus specificity extracted keyphrases and can tune the results according to particular us

- On one hand, we aim to extract keyphrases that are relevant to sp
- On the other hand, the extracted keyphrases as a whole should have coverage of the major topics in the document.
- It is often useful to control the balance between these two competitions

Definitions:

- The topic specificity of a word $w: TS(w) = \sum_{t \in T} p(t \mid w) \log \frac{p(t \mid w)}{p(t \mid w)}$
- The corpus specificity of a word w: CS(w) = p(w | corpus)
- The salience of a word $w: S(w) = (1 \alpha) CS(w) + \alpha TS(w)$, where $S(w) = (1 \alpha) CS(w) + \alpha TS(w)$. tradeoff parameter balancing corpus and topic specificity of w.

Our random walk:

$$R(w_i) = \lambda \sum_{j: w_j \to w_i} \frac{e(w_i, w_j)}{Out(w_j)} R(w_j) + (1 - \lambda) S(w_i)$$

Comparing to TPR, PageRank needs to be run only once

OISE CANCELLING / SIZE

Salience Rank **Efficient Keyphrase Extraction with Topic Modeling**

Nedelina Teneva The University of Chicago

	(2) Overview							(3) Top		
	********* ****************************	* * * * * * * * *	* * * * * * *	**************************************		*** *** **** *********	* * * * * * * *	systems compatient types linear system diophantine constraints	criteria nur natural	
O utes ents	********			************		********* ******		equations strict inequations	nonstrict bou	
to	An automatic keyphrase extraction system typically operates in 2 steps:							solutions algorithms construction sets minimal		
ys ext	1. Extract a list of phrases as candidate phrases with some heuristics.							Concrete Procedure:		
ument that	 Noun phrases with (adjective) * (noun) + Phrases that don't contain predefined stopwords 							• Given a word graph $G = (W, E)$, between w_i and w_j , the score of		
	 etc. 2. Select keyphrases from these candidates with supervised or unsupervised approaches. 							$R_t(w_i) = \lambda \sum_{j: w_j \to w_i} \frac{e}{d}$		
hrases via	• (Supervised: binary classification (Frank et al. 1999), pairwise ranking (Jiang et al. 2009) Unsupervised: graph-based ranking (Mihalcea & Tarau, 2004), topic-based clustering (Grineva et al., 2009), language modeling (Tomokiyo & Hurst, 2003) 							where $Out(w_i) = \sum_{i: w_i \to w_j} e(w_i)$ $p(t \mid w_i)$ is a topic specific jump i • Then for topic t , we obtain keyph	
								 The final keyphrase scores are given 		
	(5) Experiments							(6)		
by LDA, we run ty.	data 500r	set algo TPR			ecall).222	F score 0.229 (±0.0		We proposed an unsup improves the state-of-	,,	
ity of the use cases.	Inspe	SR TPR	0	.225 0).222).255).298	0.229 (±0.0 0.227 (±0.0 0.266 (±0.0	007)	 Performance: W run PageRank or 	•	
specific topics; have a good	 In terms of performance, while computationally more efficient, Salience Rank obtains comparable or better keyphrases on benchmark data. 							 Configurability: Users can bala extracted keyphrases and can 		
peting principles.		α	precision	recall		F score		Applications:		
		1.0 0.7	0.247 0.248	0.216 0.216		23 (±0.011) 23 (±0.011)	500news	• Frontend features		
$\frac{(t \mid w)}{p(t)}$		0.4	0.248	0.217		24 (±0.011)		Avg. Customer Review 文文文文公 & Up (283) 文文文公 & Up (341)	See Size & Style Options Arion Legacy AR508 AC Powered	
p(t)		0.1 0.0	0.254 0.248	0.222 0.217		29 (±0.010) 24 (±0.011)		************************************	System with Massive Subwoofer & Remote for MP3, PC, Game Cons by Arion Legacy \$79.99 \$99.99 \Prime	
where α is the	Unique top keyphrases when classical mathematical formali preferences theory options			$\alpha = 0$ Unique top keyphrases when $\alpha = 1$ individual interestsindividual interestsgroup interestson oneartificial social systemsInspec			Good Speakers (80) Good Sound (93) Good Quality (56) New Arrivals Last 90 days (3) Last 180 days (3) International Shipping	Get it by Tomorrow, May 21 More Buying Choices \$79.99 new (3 offers) Show only Arion Legacy items ************************************		
		condition	individual rationality conditional preference relationships			• Improving internal/external s				
)		1. • 1	 multiple agent settings Neumann-Morgenstern theory In terms of configurability: (1) Balancing TS and CS considerably impacts results; (2) Qualitatively, high CS tends to be good for a layman and high TS good for an expert. 							

Annual Meeting of the Association for Computational Linguistics. Vancouver, Canada. August 2017

Weiwei Cheng amazon

pical PageRank (Liu et al., 2010)

Intuition: A candidate keyphrase is important if it is related to other candidates, which in turn also have high importance.

- **Overall Procedure**:
- 1. Build a word graph from input document.
- 2. Perform random walk to obtain word scores.
- 3. Select keyphrases with word scores.

), where an edge $e(w_i, w_j)$ indicates relatedness of each word w_i under topic $t \in T$ is determined by $\frac{e(w_i, w_j)}{Out(w_j)} R_t(w_j) + (1 - \lambda) p(t \mid w_i),$

 (w_i, w_j) is the outdegree of vertex w_i , and p probability of w_i , derived from LDA.

phrase scores R_t (phrase) = $\sum_{w_i \in \text{phrase}} R_t(w_i)$.

given by $R(\text{phrase}) = \sum_{t \in T} R_t(\text{phrase}) p(t \mid d).$

Conclusions

phrase extraction algorithm, Salience Rank, that

loiting the structure information derived by LDA, we obtain similar or better keyphrases.

alance topic specificity and corpus specificity of the n tune the results according to use cases.

