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Keyphrase Extraction

Keyphrase extraction aims to find a collection of phrases in a document that
provides a concise summary of the text content.

* Inputs: a text document

* Outputs: a set/ranking of phrases



Keyphrase Extraction

Keyphrase extraction aims to find a collection of phrases in a document that
provides a concise summary of the text content.

* Inputs: a text document
* Outputs: a set/ranking of phrases

* Evaluation is done by comparing to human annotated keyphrases via
measures such as precision, recall, F score, etc.
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Keyphrase Extraction

An automatic keyphrase extraction system typically operates in 2 steps:

1. Extract a list of phrases as candidate phrases with some heuristics.

2. Select keyphrases from these candidates with supervised or unsupervised

approaches.
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Keyphrase Extraction

An automatic keyphrase extraction system typically operates in 2 steps:

1. Extract a list of phrases as candidate phrases with some heuristics.
* Noun phrases with (adjective)*(noun)+
* Phrases that don’t contain predefined stopwords
* etc.

2. Select keyphrases from these candidates with supervised or unsupervised
approaches.
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Keyphrase Extraction

An automatic keyphrase extraction system typically operates in 2 steps:

1. Extract a list of phrases as candidate phrases with some heuristics.
* Noun phrases with (adjective)*(noun)+
* Phrases that don’t contain predefined stopwords
* etc.

2. Select keyphrases from these candidates with supervised or unsupervised
approaches.

* Supervised: binary classification (Frank etal. 1999), pairwise ranking (iang et al. 2009)

* Unsupervised: graph-based ranking (minalcea & Tarau, 2004), topic-based clustering
(Grineva et al., 2009), language mOdeling (Tomokiyo & Hurst, 2003)
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Graph-Based Ranking
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Intuition:

A candidate keyphrase 1s important 1f it 1s
related to other candidates, which in turn
also have high importance.

Procedure: e.g., (Mihalcea & Tarau, 2004)
1. Build a word graph from the input document

2. Perform random walk (e.g., PageRank) to
obtain word scores

3. Select keyphrases with word scores
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Topical PageRank (wivetar. 2010)

* Main 1dea: Use latent topic distribution inferred by LDA, latent Dirichlet

allocation i et al., 2003), to guide the random walk on the word graph.

* In LDA, a topic 1s a distribution over the vocabulary; each document 1s viewed as

a mixture of topics.
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Topical PageRank (wivetar. 2010)

* Given a word graph G = (W, E), where vertices represent words and an edge
e(wi, Wj) indicates relatedness between w; and wy, the score of each word w;
under topic t € T 1s determined by the random walk

E(Wi, W])
Re(w) = 4 Re(w;) + 1 =) p(t|wy), (1)
) OUt(W])

J:Wj—=> Wi
where Out(Wy) = X, 0w, e(w;, w;) is the outdegree of vertex w;, and p(t | wy),

derived from LDA, is a topic specific jump probability of w;.
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Topical PageRank (wivetar. 2010)

* Given a word graph G = (W, E), where vertices represent words and an edge
e(wi, Wj) indicates relatedness between w; and wy, the score of each word w;
under topic t € T 1s determined by the random walk

Rw) =2 Z(LZ(VV:]’)) R(w)+(=Dpltlw), (D

Jiwj—=>wi
where Out(w;) = ;. Wiow; e(w;, w;) is the outdegree of vertex w;, and p(t | wy),
derived from LDA, is a topic specific jump probability of w;.

* Then for topic ¢, we obtain keyphrase scores Ry (phrase) = ., cphrase Re(Wi)-

* The final keyphrase scores are given by R(phrase) = ).t R;(phrase) p(t | d).
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Topical PageRank
Construct word co-occurrence graph
Estimate the K latent topics with LDA
Run PageRank K times with (1)
Obtain topic specific keyphrase scores
Obtain the overall keyphrase scores



Our Contribution — Salience Rank

* Performance: While still exploiting the structure information derived by LDA,
we run PageRank once instead of K times and achieve similar keyphrase quality.
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Our Contribution — Salience Rank

* Performance: While still exploiting the structure information derived by LDA,
we run PageRank once instead of K times and achieve similar keyphrase quality.
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Our Contribution — Salience Rank

* Performance: While still exploiting the structure information derived by LDA,
we run PageRank once instead of K times and achieve similar keyphrase quality.

* Configurability: Users can balance topic specificity and corpus specificity of the
extracted keyphrases and can tune the results according to particular use cases.
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Our Contribution — Salience Rank

* Performance: While still exploiting the structure information derived by LDA,
we run PageRank once instead of K times and achieve similar keyphrase quality.

* Configurability: Users can balance topic specificity and corpus specificity of the
extracted keyphrases and can tune the results according to particular use cases.

* On one hand, we aim to extract keyphrases that are relevant to specific topics;

* On the other hand, the extracted keyphrases as a whole should have a good
coverage of the major topics in the document.

* It 1s often useful to control the balance between these two competing
principles.



Our Contribution — Salience Rank

* Definition. The topic specificity of a word w 1s

p(t|w)

TS(w) = Zp(t | w) log

teT

= KL(p(t | w) || p(1))

p(t)



Our Contribution — Salience Rank

* Definition. The topic specificity of a word w 1s

p(t|w)
p(t)

TS(w) = Zp(t | w) log

teT

= KL(p(t |w) || p(t))

« Example. Suppose p(t;) = p(t,) = 0.5, we consider three words with

p(ti1lwy) = 0.9, p(tzlwy) = 0.1
p(t1|W2) = 07, p(t2|W2) = 0.3
p(t;|lws) = 0.5, p(tzlws) = 0.5

We have TS(w;) = 0.53, TS(w,) = 0.12, and TS(w3) = 0.
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* Definition. The topic specificity of a word w 1s

p(t|w)
p(t)

TS(w) = Zp(t | w) log

teT

= KL(p(t | w) || p(1))

« Example. Suppose p(t;) = p(t,) = 0.5, we consider three words with

p(ti1lwy) = 0.9, p(tzlwy) = 0.1
p(t1|W2) = 07, p(t2|W2) = 0.3
p(t;|lws) = 0.5, p(tzlws) = 0.5

We have TS(w;) = 0.53, TS(w,) = 0.12, and TS(w3) = 0.
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Our Contribution — Salience Rank

* Definition. The topic specificity of a word w 1s

TS(w) = Zp(t | w) log

teT

* Definition. The corpus specificity of a word w 1s

p(t|w)

p(t)

CS(w) = p(w | corpus)
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Our Contribution — Salience Rank

* Definition. The topic specificity of a word w 1s

p(t|w)
p(t)

TS(w) = Zp(t | w) log

teT
* Definition. The corpus specificity of a word w 1s

CS(w) = p(w | corpus)

e Definition. The salience of a word w 1s

SwW)=0—-a)CSw)+aTS(w)

where «a 1s the tradeoff parameter balancing corpus and topic specificity of w.
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Our Contribution — Salience Rank

* Definition. The topic specificity of a word w 1s

tlw
s = Y plew) log 2
teT P
* Definition. The corpus specificity of a word w 1s high, when word occurs

often in the corpus

CS(w) = p(w | corpus)

. e : : high, when word 1s less
* Definition. The salience of a word w 1s - , .
shared across topics

SwW)=0—-a)CSw)+aTS(w)

where «a 1s the tradeoff parameter balancing corpus and topic specificity of w.
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Our Contribution — Salience Rank

Our random walk:

_ e(Wi:Wj) B ,
Rw) =2 ) Dt R(w;) + (1= ) S(wy)

Jiwj—=wi

Comparing to (1) in TPR, PageRank needs to be run only once.



Empirical Evaluation — Performance

dataset algorithm
TPR
500news SR
Inspec LSS
P SR

precision
0.254
0.253
0.225
0.265

recall
0.222
0.222
0.255
0.298

F score
0.229 (£0.010)
0.229 (£0.010)
0.227 (£0.007)
0.266 (+0.007)

* While computationally more efficient, Salience Rank obtains comparable or better

keyphrases on benchmark data.

* More details are in the paper, including comparisons to other approaches,

parameter settings, etc.
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Empirical Evaluation — Configurability

(0.4
1.0
0.7
0.4
0.1
0.0

high TS

high CS

precision

0.247
0.248
0.248
0.254
0.248

recall
0.216
0.216
0.217
0.222
0.217

F score
0.223 (x0.011)
0.223 (x0.011)
0.224 (z0.011)
0.229 (£0.010)
0.224 (x0.011)

500news

* The tradeoft between topic and corpus specificity has a considerable impact on the

performance measures.
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Empirical Evaluation — Configurability

Results of Salience Rank on one Inspec abstract with extreme values of «:

highest CS Unique top keyphrases when a = 0 Unique top keyphrases when a = 1
classical mathematical formalization individual interests
preferences group interests
theory artificial social systems
options individual rationality
function conditional preference relationships
multiple agent settings Neumann-Morgenstern theory

Intuitively, the left is good for a layman and the right is good for an expert.
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Conclusions & Possible Applications

We proposed an unsupervised keyphrase extraction algorithm, Salience Rank, that
improves the state-of-the-art.

* Performance: While still exploiting the structure information derived by
LDA, we run PageRank only once and obtain similar or better keyphrases.

* Configurability: Users can balance topic specificity and corpus specificity of
the extracted keyphrases and can tune the results according to use cases.
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Conclusions & Possible Applications

* Frontend features
* Headphone Buying Guide
e Comparison Table
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Conclusions & Possible Applications

* Frontend features
* Headphone Buying Guide
e Comparison Table

 Backend features
* Improving internal/external search results
* Personalization
* etc.

D 7N e A

V) 4



Salience Rank
Efficient Unsupervised Keyphrase Extraction with Topic Modeling

Weiwei Cheng
Amazon Development Center Germany

Berlin Germany

joint work with Nedelina Teneva

amazon



