Label Ranking with Partial Abstention using Ensemble Learning

Weiwei Cheng & Eyke Hüllermeier

Knowledge Engineering & Bioinformatics Lab Department of Mathematics and Computer Science University of Marburg, Germany

Label Ranking (an example)

Learning geeks' preferences on hotels

	label ranking		
geek 1	$Golf \succ Park \succ Krim$		
geek 2	$Krim \succ Golf \succ Park$		
geek 3	Krim > Park > Golf		
geek 4	Park ≻ Golf ≻ Krim		
new geek ???			

where the geek could be described by feature vectors, e.g., (*gender*, *age*, *place* of *birth*, *is a professor*, ...)

Label Ranking (an example)

Learning geeks' preferences on hotels

	Golf	Park	Krim
geek 1	1	2	3
geek 2	2	3	1
geek 3	3	2	1
geek 4	2	1	3
new geek	?	?	?

 $\pi(i)$ = position of the *i*-th label in the ranking 1: Golf 2: Park 3: Krim

Label Ranking (more formally)

Given:

- a set of training instances $\{\mathbf{x}_k \mid k = 1 \dots m\} \subseteq \mathbf{X}$
- a set of labels $\mathcal{L} = \{l_i \mid i = 1 \dots n\}$
- for each training instance \mathbf{x}_k : a set of *pairwise preferences* of the form $l_i \succ_{\mathbf{x}_k} l_j$ (for <u>some</u> of the labels)

Find:

A ranking function (X → Ω mapping) that maps each x ∈ X to a ranking ≻_x of L (permutation π_x) and generalizes well in terms of a loss function on rankings (e.g., *Kendall's tau*)

Existing Approaches

- Constraint classification Har-Peled , Roth, and Zimak, NIPS-03
- Log linear models for label ranking Dekel, Manning, and Singer, *NIPS-03*
- Label ranking by learning pairwise preferences Hüllermeier, Fürnkranz, Cheng, and Brinker, *Artificial Intelligence*
- Decision tree and instance-based learning for label ranking Cheng, Hühn, and Hüllermeier, *ICML-09*

Learning with Reject Option

To train a learner that is able to say "I don't know".

Label Ranking with Reject Option

For **each pair of labels** *a* and *b*, the learner can

- predict a > b or b > a, or
- abstain from prediction (reject option).

The learner should be consistent (transitivity).

Label Ranking Ensemble

Create a "committee of experts"

Label Ranking Ensemble

• For a query, setup a label ranking ensemble of size *k*

 $\succ_1, \succ_2, \dots, \succ_k$.

• Define a partial order with

$$(\lambda_i \succeq \lambda_j) \iff \forall l \in \{1, 2, \dots, k\} : \lambda_i \succ_l \lambda_j$$

$$\checkmark (\lambda_i \succeq \lambda_j) \iff \frac{\#\{l \in \{1, 2, \dots, k\} \mid \lambda_i \succ_l \lambda_j\}}{k} \ge t.$$

$$0.5 < t \le 1$$

Two Problems

$$(\lambda_i \succeq \lambda_j) \iff \frac{\#\{l \in \{1, 2, \dots, k\} \mid \lambda_i \succ_l \lambda_j\}}{k} \ge t.$$

problem	Transitivity If $a > b$ and $b > c$, then $a > c$.	No cycle If $a > b$ and $b > c$, then not $c > a$.
solution	Get transitive closure with Marshall's algorithm.	to be solved

Proposition

Given a set of total orders on a finite set \mathcal{L} , denote by P_{ab} the proportion of orders in which a precedes b. Then, for any triple of elements $a, b, c \in \mathcal{L}$, we have $P_{ca} \leq 2 - P_{ab} - P_{bc}$.

S.t. $(P_{ab} \ge 2/3) \land (P_{bc} \ge 2/3) \Longrightarrow (P_{ca} \le 2/3)$

Choosing t > 2/3, we can guarantee \succeq acyclic.

Experimental Setting

dataset	#instance	#attribute	#labels
iris	150	4	3
wine	178	13	3
glass	214	9	6
vowel	528	10	11
vehicle	846	18	4

Evaluation metrics

 $C(\succeq,\succ) = \frac{\#\text{concordant label pairs} - \#\text{discordant label pairs}}{\#\text{concordant label pairs} + \#\text{discordant label pairs}}$ $prediction \quad true ranking$

10/12

Experimental Results

threshold	iris	wine	glass	vowel	vehicle
original	0.868±0.093	0.884±0.078	0.793±0.070	0.324±0.028	0.809±0.034
0.7	0.919±0.066	0.918±0.079	0.847±0.055	0.436±0.034	0.851±0.032
0.8	0.921±0.064	0.956±0.057	0.869±0.055	0.478±0.039	0.872±0.031
0.9	0.940±0.050	0.971±0.049	0.892±0.054	0.515±0.045	0.896±0.031
1.0	0.950±0.045	0.995±0.019	0.928±0.046	0.563±0.056	0.926±0.027
an comble size of to					

ensemble size of 10

Our Contributions

• A first attempt on label ranking with reject option;

• Output a reliably partial ranking with ensemble learning.

Follow up!

The End

Thanks!

Google "kebi germany" for more info.