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Evaluation metrics
= most current multilabel classifiers are model-based
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* instance-based classifiers (e.g. MLKNN) showed = Hamming loss = m‘h(x) A Ly|
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Key idea: Consider the labels of its neighbors as “extra | Zose| | e

features” of an instance.
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26 62 1.83 male no 1/3 0 1 1 0 1
16 | 45 | 1.65 |female) no | 0 | 1 |13 ] 0 0 Two-step statistical test
28 85 1.90 male yes 2/3 0 1 1 0 0
1. Test if all methods perform equally (Friedman test) «
27 ] 50 [ 163 [male | yes |2/3 |13 132 [ 2 | 2| 2. If not, compare learners in a pairwise way (Nemenyi test)
Binary case | Critical distance Nemenyi test with significance level 0.05
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For example, we can define p = p(6) £ exp (yi : *) )

0
H B . ., ) Fuve, pacision IBLR-ML: instance-based logistic regression
Now consider the whole neighborhood of xp: N 1 L SR MLKN:  maltlabel knearest neighbor
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Multilabel case Our Contribution

We solve one logistic regression problem for each label.

T = A new instance-based multilabel learning method,
log (¥> =wo +ag,- w+,‘.’\(Xo) tog: UJ+6(X0) + ag - wig(Xo) = which is based on a formalization of instance-based
X 1 1 classification as logistic regression (combination of
bias term To what extent does the presence of model-based and instance-based learning),
(prior probability ) label basketball in the neighborhood = takes the correlation between labels into account and

increase the probability that football

is relevant for the query? represents it in an easily interpretable way.
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