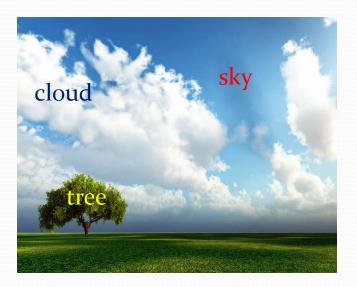
Combining Instance-Based Learning and Logistic Regression for Multilabel Classification

Weiwei Cheng & Eyke Hüllermeier

Knowledge Engineering & Bioinformatics Lab Department of Mathematics and Computer Science University of Marburg, Germany

Multilabel Classification



ECML PKDD 2009 (Journal) Paper Notification [491] Conference	Research	X	
Alek Kolcz to me, eyke, ep09-papers-we.	Seply	•	Conference
Dear Weiwei and Eyke,			Party Private
We are pleased to inform you that your paper			Programming
"Combining Instance-Based Learning and Logistic Regression for Multi-Label Classification"			<mark>■ Research</mark> <u>4 more</u> ▼

What is Multilabel Classification?

Conventional classification

- Instances are associated with a single label λ from a set L of finite labels
 - if $|\mathcal{L}| = 2$, binary classification;
 - if $|\mathcal{L}| > 2$, multi-class classification.
- Multilabel classification
 - Instances are associated with a set of labels $L \subseteq \mathcal{L}$.

Existing Methods

- Quite a number of methods for multilabel classification have been proposed, most of them being model-based approaches (training a global model for prediction).
- Our work is especially motivated by MLKNN: Zhang & Zhou. ML-kNN: A lazy learning approach to multi-label learning. *Pattern Recognition*, 2007, 40(7): 2038-2048.

In a number of practical problems, MLKNN shows very strong performance and even outperforms **RankSVM** and **AdaBoost.MH**.

• Still, many methods ignore the correlation between labels. A paper with label *CS* is more likely having label *Math*, than *Law*.

Our Contributions

- A new multilabel learning method,
- which is based on a formalization of instance-based classification as logistic regression (combination of model-based and instance-based learning),
- takes the correlation between labels into account and represents it in an easily interpretable way.

Key idea:

Consider the labels of neighbors as "extra features" of an instance

Does he like basketball?

Extended representation:

age	weight	height	sex	w.child	#	
26	62	1.83	male	no	1/3	1
16	45	1.65	female	no	0	0
28	85	1.90	male	yes	2/3	1

27 50 1.63 male yes 2/3 ?

Extra feature: 2 among 3 neighbors like basketball

IBL as Logistic Regression (binary case)

Consider query instance \mathbf{x}_0 , distance $\delta_i \stackrel{\text{df}}{=} \Delta(\mathbf{x}_0, \mathbf{x}_i)$, posterior probability $\pi_0 \stackrel{\text{df}}{=} \mathbf{P}(y_0 = +1 \mid y_i)$:

$$\frac{\pi_0}{1 - \pi_0} = \frac{\mathbf{P}(y_i \mid y_0 = +1)}{\mathbf{P}(y_i \mid y_0 = -1)} \cdot \frac{p_0}{1 - p_0} = \rho \cdot \frac{p_0}{1 - p_0}$$
$$\log\left(\frac{\pi_0}{1 - \pi_0}\right) = \log(\rho) + \underbrace{\log(p_0) - \log(1 - p_0)}_{\omega_0}$$

For example, we can define $\rho = \rho(\delta) \stackrel{\text{df}}{=} \exp\left(y_i \cdot \frac{\alpha}{\delta}\right)$. $\begin{array}{c} \delta \to +\infty & \rho \to 1 \\ \delta \to +\infty & y_i = +1 \to \rho \uparrow \end{array}$

Now consider the whole neighborhood of x_0 :

$$\log\left(\frac{\pi_{0}}{1-\pi_{0}}\right) = \omega_{0} + \alpha \sum_{\mathbf{x}_{i} \in \mathcal{N}(\mathbf{x}_{0})} \frac{y_{i}}{\delta_{i}} = \omega_{0} + \alpha \cdot \omega_{+}(\mathbf{x}_{0})$$

bias term (prior probability) evidence for positive class 7/16

IBL as Logistic Regression (binary case)

$$\log\left(\frac{\pi_0}{1-\pi_0}\right) = \omega_0 + \alpha \cdot \omega_+(\mathbf{x}_0) = \omega_0 + \alpha \sum_{\mathbf{x}_i \in \mathcal{N}(\mathbf{x}_0)} \frac{y_i}{\delta_i}$$

From *distance* to *similarity*

$$= \omega_0 + \alpha \sum_{\mathbf{x}_i \in \mathcal{N}(\mathbf{x}_0)} \kappa(\mathbf{x}_0, \mathbf{x}_i) \cdot y_i$$

The standard *KNN* classifier is recovered as a special case:

• Set
$$\omega_0 = 0$$
, and

•
$$\kappa(\mathbf{x}_0, \mathbf{x}_i) = \begin{cases} 1 & \text{if } \mathbf{x}_i \in \mathcal{N}_k(\mathbf{x}_0) \\ 0 & \text{otherwise} \end{cases}$$

Same idea for multilabel case:

Consider the labels of neighbors as "extra features" of an instance

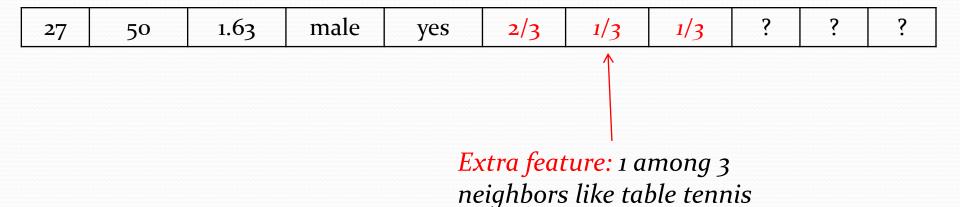
	age	weight	height	sex	w.child		R	۲
ſ	26	62	1.83	male	no	1	0	1
NN -	16	45	1.65	female	no	0	1	0
L	28	85	1.90	male	yes	1	0	1
-		-		•••	•••			
test inst.	27	50	1.63	male	yes	?	?	?
						1	1	1
					Does he	like bask	etball?	

...

Extended representation:

age	weight	height	sex	w.child	#	# 🔍	# 🐑		S	۲
26	62	1.83	male	no	1/3	0	1	1	0	1
16	45	1.65	female	no	0	1	1/3	0	1	0
28	85	1.90	male	yes	2/3	0	1	1	0	0

...



IBL as Logistic Regression (multilabel case)

We solve one logistic regression problem for each label!

Example:

$$\log\left(\underbrace{\textcircled{\bullet}}_{\textcircled{\bullet}}\right) = \omega_0 + \alpha_{\textcircled{\bullet}} \cdot \omega_{+\textcircled{\bullet}}(\mathbf{x}_0) + \alpha_{\textcircled{\bullet}} \cdot \omega_{+\textcircled{\bullet}}(\mathbf{x}_0) + \alpha_{\textcircled{\bullet}} \cdot \omega_{+\textcircled{\bullet}}(\mathbf{x}_0)$$

To what extent does the presence of label basektball in the neighborhood increase the probability that football is relevant for the query?

IBL as Logistic Regression (multilabel case)

Multilabel prediction rule

$$L = \left\{ \lambda \in \mathcal{L} \mid \log\left(\frac{\pi_0(\lambda)}{1 - \pi_0(\lambda)}\right) > 0 \right\}$$

Ranking rule

$$\lambda_i \succ \lambda_j \iff \log\left(\frac{\pi_0(\lambda_i)}{1 - \pi_0(\lambda_i)}\right) > \log\left(\frac{\pi_0(\lambda_j)}{1 - \pi_0(\lambda_j)}\right)$$

Experiments

dataset	domain	#inst.	#attr.	#labels	card.
emotions	music	593	72	6	1,87
image	vision	2000	135	5	1,24
genbase	biology	662	1186 <mark>(n)</mark>	27	1,25
mediamill	multimedia	5000	120	101	4,27
reuters	text	7119	243	7	1,24
scene	vision	2407	2 94	6	1,07
yeast	biology	2417	103	14	4,24

- Tested methods:
 - MLKNN
 - Binary relevance learning (BR) with logistic regression, C4.5 and KNN
 - Label powerset (LP) with C4.5
 - Our method: IBLR-ML

Evaluation metrics

• Hamming loss
$$= \frac{1}{|\mathcal{L}|} |h(\mathbf{x}) \Delta L_{\mathbf{x}}|$$

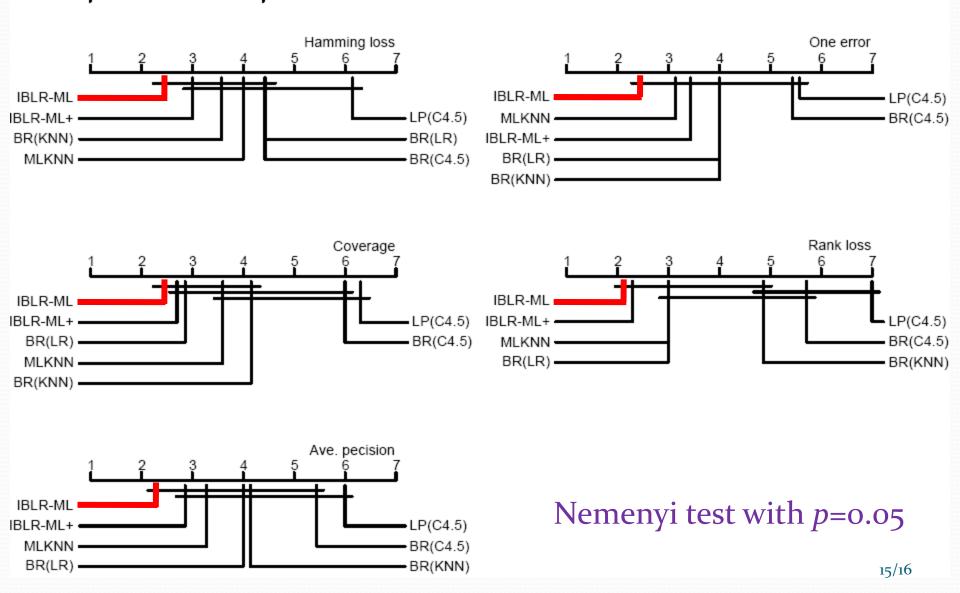
• one error $= \begin{cases} 1 & \text{if } \arg \max_{\lambda \in \mathcal{L}} f(\mathbf{x}, \lambda) \notin L_{\mathbf{x}} \\ 0 & \text{otherwise} \end{cases}$

coverage
$$= \max_{\lambda \in L_{\mathbf{x}}} \operatorname{rank}_{f}(\mathbf{x}, \lambda) - 1$$

• rank loss
$$= \frac{\#\{(\lambda, \lambda') \mid f(\mathbf{x}, \lambda) \le f(\mathbf{x}, \lambda'), (\lambda, \lambda') \in L_{\mathbf{x}} \times L_{\mathbf{x}}\}}{|L_{\mathbf{x}}||\overline{L_{\mathbf{x}}}|}$$

• average precision
=
$$\frac{1}{|L_{\mathbf{x}}|} \sum_{\lambda \in L_{\mathbf{x}}} \frac{|\{\lambda' | \operatorname{rank}_{f}(\mathbf{x}, \lambda') \leq \operatorname{rank}_{f}(\mathbf{x}, \lambda), \lambda' \in L_{\mathbf{x}}\}|}{\operatorname{rank}_{f}(\mathbf{x}, \lambda)}$$

critical distance



Contributions of Our Work

- Novel approach to IBL, applicable to classification in general and multilabel classification in particular.
- Key idea: Consider label information in the neighborhood of a query as "extra features" of that query.
- Balance between global and local inference automatically optimized via fitting a logistic regression function.
- Interdependencies between labels estimated by regression coefficients.
- Extension: Logistic regression combining "normal features" with "extra features".

IBLR-ML is available in the MULAN Java library, maintained by the Machine Learning & Knowledge Discovery Group, University of Thessaloniki.

http://mlkd.csd.auth.gr/multilabel.html

