

# PREDICTING PARTIAL ORDERS: **RANKING WITH ABSTENTION**



Weiwei Cheng<sup>1</sup>, Michaël Rademaker<sup>2</sup>, Bernard De Baets<sup>2</sup>, Eyke Hüllermeier<sup>1</sup> <sup>1</sup> *Knowledge Engineering & Bioinformatics Lab, University of Marburg, Germany* <sup>2</sup> Research Unit Knowledge-Based Systems, Ghent University, Belgium

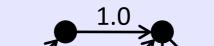
# **RANKING WITH REJECT OPTION**

Existing learning algorithms for ranking (label ranking, object ranking, instance ranking, etc.) produce a total order of alternatives. For example, consider the problem of learning a reviewer's preferences on papers:

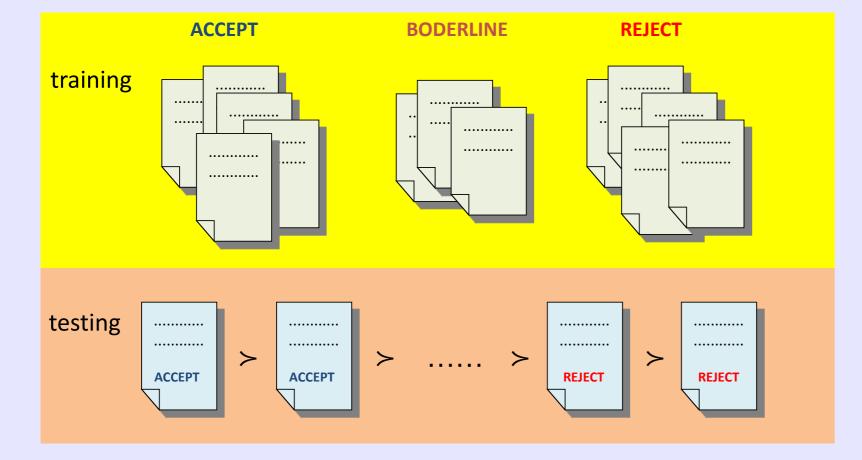
#### PREDICTING A STRICT PARTIAL ORDER

Based on *P*, we seek to induce a (partial) order relation,  $\mathcal{R} : \mathbf{A} \times \mathbf{A} \to \{0, 1\}$  with a threshold  $\alpha$ :

 $\mathcal{R}_{\alpha} = \{(a, b) \mid P(a, b) \ge \alpha\}$ 







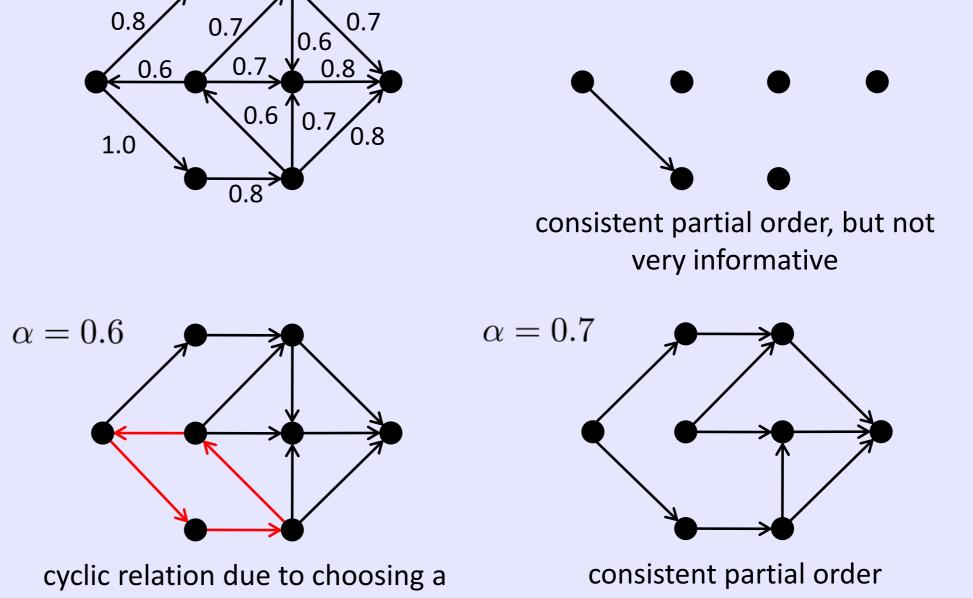
We propose learners that are able to partly **abstain**. For a pair of items *a* and *b* to be ranked, the learner can

- predict a > b or b > a, or
- abstain from the prediction (reject option).

The learner should be consistent (**transitive & acyclic**).

The roadmap of our approach:

- 1. Predicting a binary preference relation *P* that specifies, for each pair of alternatives *a* and *b*, a degree of uncertainty regarding their relative comparison;
- 2. Deriving a (strict) partial order as much as possible in



too small threshold

Finding a minimal  $\alpha$  (denoted as  $\alpha^*$ ) such that the transitive closure of  $\mathcal{R}_{\alpha}$  (denoted as  $\overline{\mathcal{R}}_{\alpha}$ ) is a strict partial order relation:

- The domain of  $\alpha$  can be restricted to  $\{0, 1/k, 2/k, \ldots, 1\}$ ;
- If  $\mathcal{R}_{\alpha}$  is cyclic,  $\mathcal{R}_{\beta}$  is cyclic as well, unless  $\beta > \alpha$ . Moreover, we can show that

 $\alpha_u = 1 \ge \alpha^* \ge \alpha_l = \frac{1}{k} + \max_{a,b} \min(P(a,b), P(b,a)).$ An algorithm of complexity  $O(|\mathbf{A}|^3)$ :

agreement with *P*.

## **EVALUATION MEASURES**

| Considering two | parita                                           | al order | r relatio | ons $\square_*$ and | $\square$ , we have |  |
|-----------------|--------------------------------------------------|----------|-----------|---------------------|---------------------|--|
|                 | $a \sqsupset_* b \ b \sqsupset_* a \ a \bot_* b$ |          |           |                     |                     |  |
| 6               | $a \sqsupset b$                                  | С        | D         | ×                   |                     |  |
| ŀ               | $p \sqsupset a$                                  | D        | С         | ×                   |                     |  |
|                 | $a \bot b$                                       | ×        | ×         | ×                   |                     |  |
|                 | D: discordant                                    |          |           |                     |                     |  |
| A               | 1 1.                                             | 111-1-1  |           | 1:1:                | - 11                |  |

As ranker now has the ability to reject predictions, there is a trade-off between correctness  $\frac{|C|-|D|}{|C|+|D|}$  and completeness  $\frac{|C|+|D|}{|\neg_*|}$ .

## **PREDICTING A PREFERENCE RELATION**

A preference relation  $P : A \times A \longrightarrow [0, 1]$  provides a measure of support for the pairwise preference a > b, with P(a,b) = 1 - P(b,a) for all  $a, b \in A$ .

Repeat until  $\alpha_u - \alpha_l < 1/k$ 

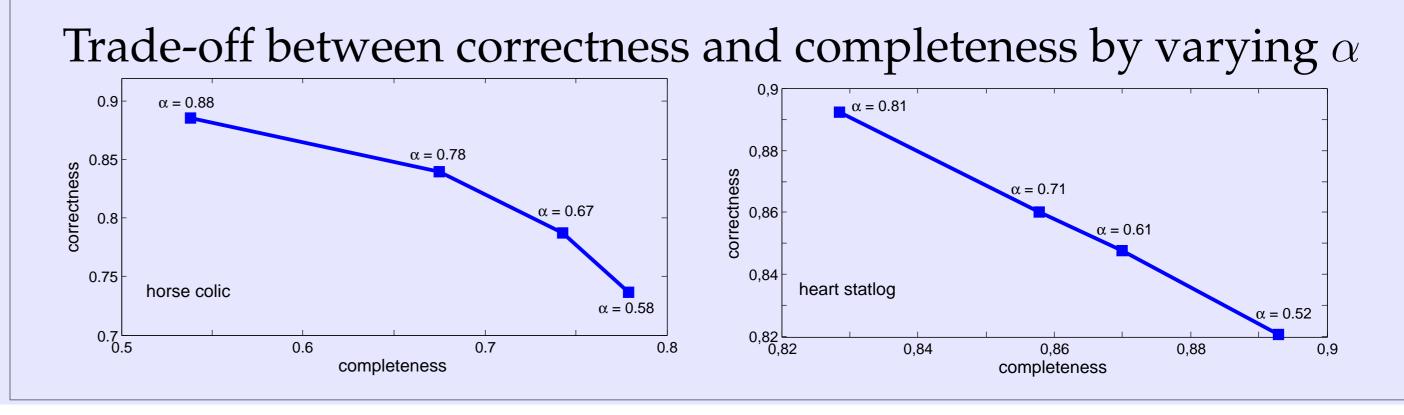
- 1. Set  $\alpha$  to the middle point between  $\alpha_u$  and  $\alpha_l$
- 2. Compute  $\mathcal{R}_{\alpha}$
- 3. Compute  $\overline{\mathcal{R}}_{\alpha}$  (e.g., using the Floyd-Warshall algorithm)
- 4. If  $\overline{\mathcal{R}}_{\alpha}$  is a partial order, set  $\alpha_u$  to  $\alpha$
- 5. Else set  $\alpha_l$  to  $\alpha$

## **EXPERIMENTAL RESULTS**

#### Results on bi-partite ranking problems

|                 |             |            |                   | - · ·          |              |
|-----------------|-------------|------------|-------------------|----------------|--------------|
| data set        | #attributes | #instances | with abstention   | w/o abstention | completeness |
| breast          | 9           | 286        | 0.330±0.150       | 0.318±0.141    | 0.578±0.074  |
| breast-w        | 9           | 699        | 0.988±0.014       | 0.987±0.015    | 0.982±0.015  |
| horse colic     | 22          | 368        | 0.734±0.135       | 0.697±0.142    | 0.790±0.044  |
| credit rating   | 15          | 690        | 0.858±0.062       | 0.827±0.065    | 0.888±0.038  |
| credit german   | 20          | 1000       | 0.610±0.088       | 0.568±0.084    | 0.741±0.060  |
| pima diabetes   | 8           | 768        | 0.684±0.084       | 0.666±0.086    | 0.819±0.047  |
| heart statlog   | 13          | 270        | 0.811±0.102       | 0.797±0.101    | 0.890±0.060  |
| hepatitis       | 19          | 155        | 0.709±0.292       | 0.697±0.271    | 0.797±0.084  |
| ionosphere      | 34          | 351        | 0.771±0.174       | 0.722±0.190    | 0.814±0.098  |
| kr-vs-kp        | 36          | 3196       | 0.992±0.006       | 0.980±0.007    | 0.991±0.006  |
| labor           | 16          | 57         | 0.990±0.049       | 0.985±0.060    | 0.989±0.052  |
| mushroom        | 22          | 8124       | $1.000 \pm 0.000$ | 1.000±0.000    | 0.808±0.017  |
| thyroid disease | 29          | 3772       | 0.890±0.071       | 0.883±0.070    | 0.928±0.040  |
| sonar           | 60          | 206        | 0.684±0.224       | 0.575±0.271    | 0.575±0.056  |
| tic-tac-toe     | 9           | 958        | 0.253±0.127       | 0.221±0.120    | 0.908±0.013  |
| vote            | 16          | 435        | 0.981±0.032       | 0.976±0.036    | 0.913±0.035  |

- We use a generic approach that can turn every ranker into a partial ranker via ensembling.
- 1. With a ranker *L*, train *k* ranking models  $M_1 \dots M_k$  by resampling from the original data set, i.e., by *k* bootstrap samples. By querying these models, *k* rankings  $\succ_1 \ldots \succ_k$  will be produced;
- 2. For each pair of alternatives *a* and *b*, we define the degree of preference  $P(a, b) = \frac{1}{k} |\{i \mid a \succ_i b\}|.$



ACKNOWLEDGEMENT: Weiwei Cheng was financially supported by the UNESCO ECML PKDD 2010 Conference Grant ECML PKDD 2010, European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, Barcelona, September 2010