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RANKING WITH REJECT OPTION

Existing learning algorithms for ranking (label ranking, object
ranking, instance ranking, etc.) produce a total order of
alternatives. For example, consider the problem of learning a
reviewer’s preferences on papers:Learning reviewer’s preferences on papers

Instance Ranking – An Example
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We propose learners that are able to partly abstain. For a pair
of items a and b to be ranked, the learner can

- predict a > b or b > a, or

- abstain from the prediction (reject option).

The learner should be consistent (transitive & acyclic).

The roadmap of our approach:

1. Predicting a binary preference relation P that specifies, for
each pair of alternatives a and b, a degree of uncertainty
regarding their relative comparison;

2. Deriving a (strict) partial order as much as possible in
agreement with P .

EVALUATION MEASURES

Considering two parital order relations A∗ and A, we have
a A∗ b b A∗ a a⊥∗b

a A b C D ×
b A a D C ×
a⊥b × × ×

C: concordant D: discordant

As ranker now has the ability to reject predictions, there is a
trade-off between correctness |C|−|D||C|+|D| and completeness |C|+|D||A∗| .

PREDICTING A PREFERENCE RELATION

A preference relation P : A×A −→ [0, 1] provides a measure of
support for the pairwise preference a > b, with
P (a, b) = 1− P (b, a) for all a, b ∈ A.

We use a generic approach that can turn every ranker into a
partial ranker via ensembling.

1. With a ranker L, train k ranking models M1 . . .Mk by
resampling from the original data set, i.e., by k bootstrap
samples. By querying these models, k rankings �1 . . . �k will
be produced;

2. For each pair of alternatives a and b, we define the degree of
preference P (a, b) = 1

k

∣∣{i | a �i b }∣∣.

PREDICTING A STRICT PARTIAL ORDER

Based on P , we seek to induce a (partial) order relation,
R : A×A→ {0, 1}with a threshold α:

Rα = {(a, b) |P (a, b) ≥ α}
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Finding a minimal α (denoted as α∗) such that the transitive
closure ofRα (denoted asRα) is a strict partial order relation:

• The domain of α can be restricted to {0, 1/k, 2/k, . . . , 1};
• IfRα is cyclic,Rβ is cyclic as well, unless β > α.

Moreover, we can show that

αu = 1 ≥ α∗ ≥ αl =
1
k +maxa,bmin(P (a, b), P (b, a)).

An algorithm of complexity O(|A|3):

Repeat until αu − αl < 1/k

1. Set α to the middle point between αu and αl

2. ComputeRα

3. ComputeRα (e.g., using the Floyd-Warshall algorithm)
4. IfRα is a partial order, set αu to α
5. Else set αl to α

EXPERIMENTAL RESULTS

Results on bi-partite ranking problems
data set #attributes #instances with abstention w/o abstention completeness

breast 9 286 0.330±0.150 0.318±0.141 0.578±0.074
breast-w 9 699 0.988±0.014 0.987±0.015 0.982±0.015

horse colic 22 368 0.734±0.135 0.697±0.142 0.790±0.044
credit rating 15 690 0.858±0.062 0.827±0.065 0.888±0.038

credit german 20 1000 0.610±0.088 0.568±0.084 0.741±0.060
pima diabetes 8 768 0.684±0.084 0.666±0.086 0.819±0.047

heart statlog 13 270 0.811±0.102 0.797±0.101 0.890±0.060
hepatitis 19 155 0.709±0.292 0.697±0.271 0.797±0.084

ionosphere 34 351 0.771±0.174 0.722±0.190 0.814±0.098
kr-vs-kp 36 3196 0.992±0.006 0.980±0.007 0.991±0.006

labor 16 57 0.990±0.049 0.985±0.060 0.989±0.052
mushroom 22 8124 1.000±0.000 1.000±0.000 0.808±0.017

thyroid disease 29 3772 0.890±0.071 0.883±0.070 0.928±0.040
sonar 60 206 0.684±0.224 0.575±0.271 0.575±0.056

tic-tac-toe 9 958 0.253±0.127 0.221±0.120 0.908±0.013
vote 16 435 0.981±0.032 0.976±0.036 0.913±0.035

Trade-off between correctness and completeness by varying α
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