Predicting Partial Orders: Ranking with Abstention

Weiwei Cheng¹, Michael Rademaker², Bernard De Baets², Eyke Hüllermeier¹

¹ Knowledge Engineering & Bioinformatics Lab University of Marburg, Germany

² Research Unit Knowledge-Based Systems Ghent University, Belgium

ECMLPKDD 2010, Barcelona, Sep.23.2010

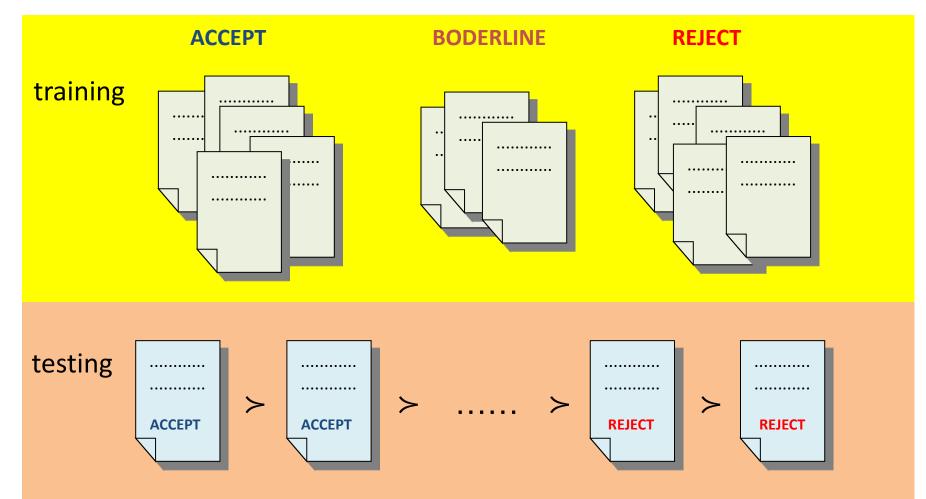
Supervised Ranking Problems

- Label ranking
- Object ranking
- Instance ranking

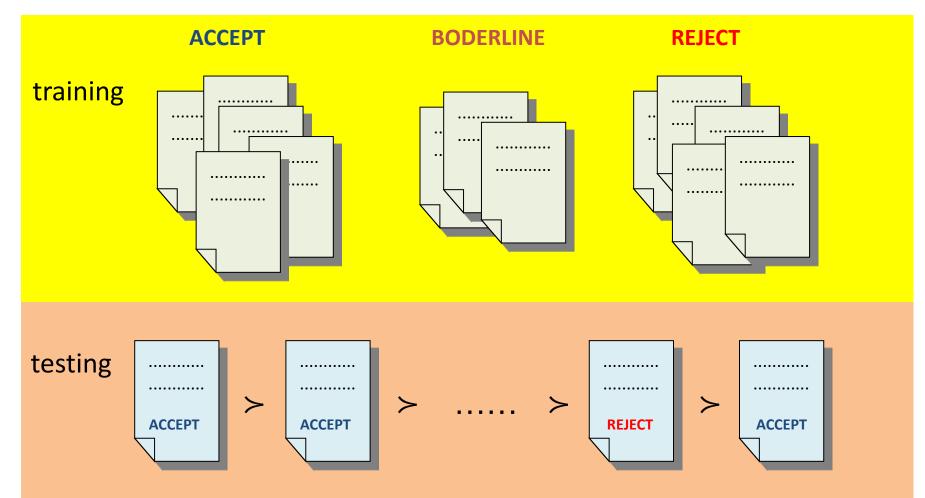
More in: J. Fürnkranz and E. Hüllermeier, *Preference Learning*, Springer, 2010

Output is a total order of alternatives.

Learning reviewer's preferences on papers



Learning reviewer's preferences on papers



4/15

Instance Ranking

Given:

- a set of training instances $\{\mathbf{x}_1, \ldots, \mathbf{x}_n\} \subseteq \mathcal{X}$
- a set of labels $\mathcal{Y} = \{y_1, \dots, y_k\}$ endowed with an order $y_1 < y_2 < \dots < y_k$
- for each training instance \mathbf{x}_l an associated label y_l

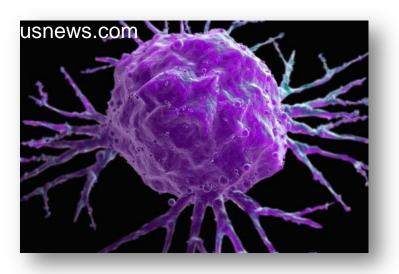
Find:

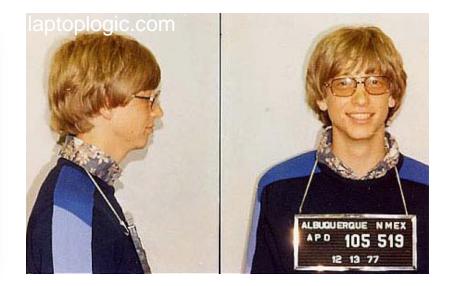
a ranking function that orders a new set of instances $\{\mathbf{x}'_j\}_{j=1}^t$ according to their (unknown) preference degrees

Performance measures:

- AUC in the dichotomous case (k = 2, i.e., bipartite ranking)
- C-index in the polytomous case (k > 2, i.e., k-partite ranking)

To train a learner that is able to say "I don't know".



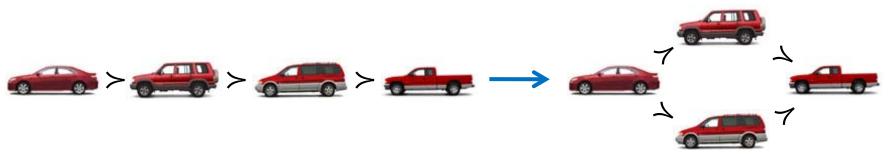


For a pair of items \boldsymbol{a} and \boldsymbol{b} to be ranked, the learner can

- predict a > b or b > a, OR
- abstain from prediction (reject option).

The learner should be consistent (transitive & acyclic).

e.g. rank among cars, vans, suvs, and trucks according to a custom's preference



strict total orders -----> strict partial orders

The Roadmap of Our Approach

- Predicting a binary preference relation P that specifies, for each pair of alternatives a and b, a degree of uncertainty regarding their relative comparison.
- 2. Deriving a (strict) partial order that is maximally compatible with the preference relation *P*.

A preference relation $P : A \times A \rightarrow [0, 1]$ provides a measure of support for the pairwise preference $a \geq b$, with P(a, b) = 1 - P(b, a) for all $a, b \in A$.

We use a generic approach that can turn every ranker into a partial ranker via ensembling.

SEASONAL GREETINGS FROM US ALL!

A preference relation $P : A \times A \rightarrow [0, 1]$ provides a measure of support for the pairwise preference a > b, with P(a, b) = 1 - P(b, a) for all $a, b \in A$.

We use a generic approach that can turn every ranker into a partial ranker via ensembling.

- 1. With a ranker L, train k ranking models $M_1 \dots M_k$ by resampling from the original data set, i.e., by k bootstrap samples. By querying these models, k rankings $\succ_1 \dots \succ_k$ will be produced.
- 2. For each pair of alternatives a and b, we define the degree of preference $P(a, b) = \frac{1}{k} |\{i \mid a \succ_i b\}|.$

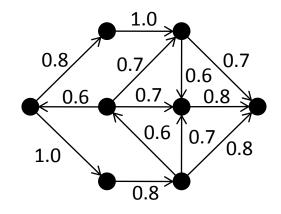
Based on *P*, we seek to induce a (partial) order relation $\mathcal{R} : \mathbf{A} \times \mathbf{A} \to \{0, 1\}$. $\mathcal{R}(a, b) = 1 \Leftrightarrow (a, b) \in \mathcal{R} \Leftrightarrow a\mathcal{R}b$

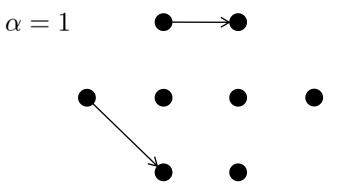
$$\mathcal{R}_{\alpha} = \{(a, b) \mid P(a, b) \ge \alpha\}$$

Two intuitive choices for α :

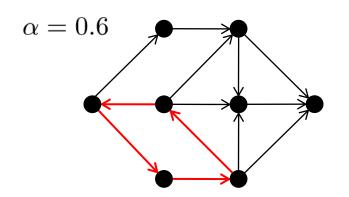
- 1. Consensus, i.e., $\alpha = 1$. Most items will be declared as incomparable.
- 2. Majority (aka. Condorcet criterion), i.e., $\alpha = 0.5$. A cyclic relation can be produced, e.g., $a \succ_1 b \succ_1 c$ $b \succ_2 c \succ_2 a \implies P(a,b) = P(b,c) = P(c,a) = 2/3$ $c \succ_3 a \succ_3 b$

Predicting a Strict Partial Order

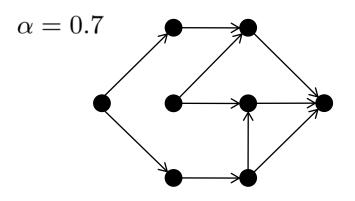




consistent partial order, but not very informative



cyclic relation due to choosing a too small threshold



consistent partial order

Looking for a minimal α (denoted as α^*) such that the transitive closure of \mathcal{R}_{α} (denoted as $\overline{\mathcal{R}}_{\alpha}$) is a strict partial order relation.

- The domain of α can be restricted to $\{0, 1/k, 2/k, \dots, 1\}$.
- If \mathcal{R}_{α} is cyclic, \mathcal{R}_{β} is cyclic as well, unless $\beta > \alpha$.

Moreover, we can show that

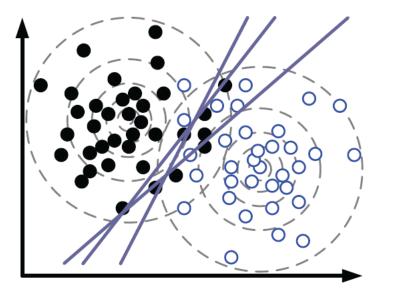
$$\alpha_u = 1 \ge \alpha^* \ge \alpha_l = \frac{1}{k} + \max_{a,b} \min(P(a,b), P(b,a)).$$

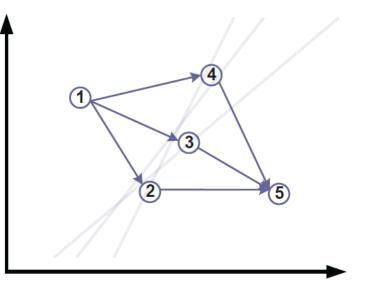
Repeat until $\alpha_u - \alpha_l < 1/k$

- 1) Set α to the middle point between α_u and α_l
- 2) Compute \mathcal{R}_{α}
- 3) Compute $\overline{\mathcal{R}}_{\alpha}$ (e.g., with the Floyd-Warshall's algorithm)
- 4) If \mathcal{R}_{α} is a partial order, set α_u to α
- 5) else set α_l to α

$$\mathcal{O}(|\mathbf{A}|^3)$$

An Illustrating Example





Left: training data and ensemble models Right: partial order predicted for a set of five query instances

As now the ranker has the ability to reject predictions, there is a trade-off between correctness and completeness.

	$a \sqsupset_* b$	$b \sqsupseteq_* a$	$a \bot_* b$
$a \sqsupset b$	С	D	×
$b \sqsupset a$	D	\mathbf{C}	×
$a \bot b$	×	×	×

C: concordant D: discordant

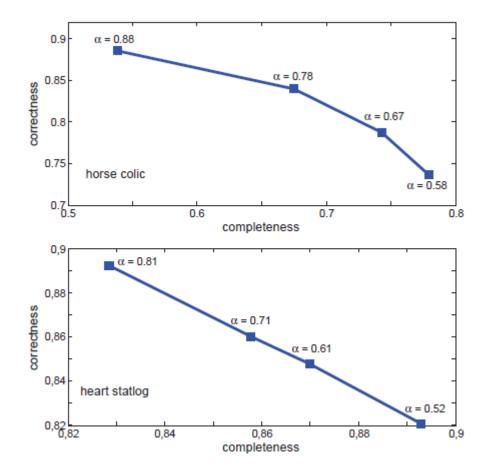
As now the ranker has the ability to reject predictions, there is a trade-off between correctness and completeness.

- Correctness is measured by gamma rank correlation: $CR(\Box, \Box_*) = \frac{|C| - |D|}{|C| + |D|}$
- Completeness measure punishes the abstention from comparisons that should actually be made.

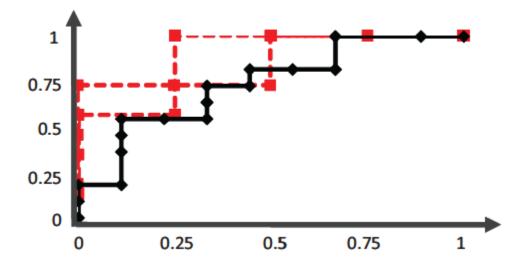
$$CP(\Box, \Box_*) = \frac{|C| + |D|}{|\Box_*|}$$

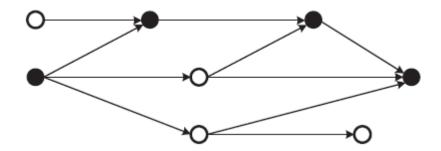
			correctness	correctness	
data set	#attr.	#inst.	with abstention	w/o abstention	$\operatorname{completeness}$
breast	9	286	$0.330{\pm}0.150$	$0.318 {\pm} 0.141$	$0.578{\pm}0.074$
breast-w	9	699	$0.988 {\pm} 0.014$	$0.987 {\pm} 0.015$	$0.982{\pm}0.015$
horse colic	22	368	$0.734{\pm}0.135$	$0.697 {\pm} 0.142$	$0.790{\pm}0.044$
credit rating	15	690	$0.858 {\pm} 0.062$	$0.827 {\pm} 0.065$	$0.888 {\pm} 0.038$
credit german	20	1000	$0.610{\pm}0.088$	$0.568 {\pm} 0.084$	$0.741{\pm}0.060$
pima diabetes	8	768	$0.684{\pm}0.084$	$0.666 {\pm} 0.086$	$0.819{\pm}0.047$
heart statlog	13	270	$0.811 {\pm} 0.102$	$0.797 {\pm} 0.101$	$0.890{\pm}0.060$
hepatitis	19	155	$0.709 {\pm} 0.292$	$0.697 {\pm} 0.271$	$0.797{\pm}0.084$
ionosphere	34	351	$0.771 {\pm} 0.174$	$0.722 {\pm} 0.190$	$0.814{\pm}0.098$
kr-vs-kp	36	3196	$0.992{\pm}0.006$	$0.980{\pm}0.007$	$0.991{\pm}0.006$
labor	16	57	$0.990{\pm}0.049$	$0.985 {\pm} 0.060$	$0.989{\pm}0.052$
mushroom	22	8124	$1.000 {\pm} 0.000$	$1.000 {\pm} 0.000$	$0.808 {\pm} 0.017$
thyroid disease	29	3772	$0.890{\pm}0.071$	$0.883 {\pm} 0.070$	$0.928{\pm}0.040$
sonar	60	206	$0.684{\pm}0.224$	$0.575 {\pm} 0.271$	$0.575{\pm}0.056$
tic-tac-toe	9	958	$0.253 {\pm} 0.127$	$0.221{\pm}0.120$	$0.908{\pm}0.013$
vote	16	435	$0.981{\pm}0.032$	$0.976 {\pm} 0.036$	$0.913 {\pm} 0.035$

Experiments – Instance Ranking



Experiments – Instance Ranking





We have addressed the problem of "reliable" prediction in the context of learning to rank.

- A relaxation of the conventional setting where predictions are given in terms of partial instead of total orders.
- A generic approach to predicting partial orders that is applicable to different types of ranking problems.
- Measures for evaluating the performance of a ranker with (partial) reject option.
- Empirically, we have shown that our method is able to trade off accuracy against completeness.