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Motivation

– A large number of loss functions is commonly applied as performance
metrics, but a concrete connection between a multi-label classifier and a loss
function is rarely established

– This gives implicitly the misleading impression that the same method can
be optimal for different loss functions

– The notion of “label dependence” is often used in a purely intuitive
manner, without a precise formal definition

– The results are given on average without investigation under which
conditions a given algorithm benefits

– The reasons for improvements are not carefully distinguished

Analysis of Hamming and Subset 0/1 Loss

– Hamming loss measures the fraction of labels whose relevance is
incorrectly predicted:

LH(y,h(x)) =
1

m

m∑
i=1

Jyi 6= hi(x)K,

while subset 0/1 loss measures whether the prediction totally agrees with
the true labeling:

Ls(y,h(x)) = Jy 6= h(x)K

Can one of the loss functions be used as a proxy of the other?

– The risk minimizer of the Hamming loss is the marginal mode:

h∗i (x) = arg max
b∈{0,1}

P(yi = b |x), i = 1, . . . ,m ,

while for the subset 0/1 loss, it is the joint mode:

h∗s(x) = arg max
y∈Y

P(y |x)

– In some situations both risk minimizers coincide, for example, if:

– labels Y1, . . . , Ym are conditionally independent, i.e.,

P(Y |x) =
m∏
i=1

P(Yi |x)

– probability of the joint mode is ≥ 0.5, i.e., P(h∗s(x) |x) ≥ 0.5

– One can also provide mutual bounds for both loss functions:

1

m
EY[Ls(Y,h(x))] ≤ EY[LH(Y,h(x))] ≤ EY[Ls(Y,h(x))]

– However, one can show that the following upper bounds are tight:

EYLs(Y,h
∗
H(x))− EYLs(Y,h

∗
s(x)) < 0.5,

EYLH(Y,h∗s(x))− EYLH(Y,h∗H(x)) <
m− 2

m + 2

what means that minimization of the Hamming loss may cause a high
regret for the subset 0/1 loss and vice versa

Conclusions

– A careful distinction between loss functions seems to be even more impor-
tant for MLC than for standard classification

– One cannot expect the same MLC method to be optimal for different types
of losses

Experimental Evidence of Theoretical Claims

Binary Relevance:

– The simplest approach in which a separate classifier hi(·) is trained for
each label λi:

hi : X → [0, 1]

x 7→ yi ∈ {0, 1}

– It is often criticized for treating labels independently

– However, it is still an unbiased approach for the Hamming loss

Label Power-set:

– The method reduces the problem to multi-class classification by
considering each label subset L ∈ L as a distinct meta-class:

h : X → [0, 1]m

x 7→ y ∈ {0, 1}m

– It is often claimed to be a right approach to MLC, since it takes
the label dependence into account

– However, this approach is clearly tailored for the subset 0/1 loss

Simulations:

– Artificial data sets: conditional independence (left) and conditional
dependence (right)

classifier Hamming loss subset 0/1 loss

BR 0.4208(±.0014) 0.8088(±.0020)
LP 0.4212(±.0011) 0.8101(±.0025)

Bayes Optimal 0.4162 0.8016

classifier Hamming loss subset 0/1 loss

BR 0.3900(±.0015) 0.7374(±.0021)
LP 0.4227(±.0019) 0.6102(±.0033)

Bayes Optimal 0.3897 0.6029

– Data set is composed of two labels: the first label is obtained by a linear
model, while the second label represents the XOR problem
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classifier Hamming subset 0/1
loss loss

BR Linear SVM 0.2399(±.0097) 0.4751(±.0196)
LP Linear SVM 0.0143(±.0020) 0.0195(±.0011)

BR MLRules 0.0011(±.0002) 0.0020(±.0003)

Bayes Optimal 0 0

Summary:

– LP takes the label dependence into account, but the conditional one: it is
well-tailored for the subset 0/1 loss, but fails for the Hamming loss

– LP may gain from the expansion of the feature or hypothesis space: the
reasons of improvements should be carefully distinguished

Benchmark Data:

– The experimental results on benchmark data confirm the main claims
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