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Monotonicity Additive & Non-Additive Measures

Let C = {c1,...,¢n} be a finite set and u(-) a measure 2¢ — [0, 1]. For
each A C C, we interpret i(A) as the weight of the set A.

Incorporating background knowledge, such as monotonicity, into the
learning process is an important aspect in machine learning research.

C' = {speaking Chinese, coding in Java, coding in C}

For an additive measure:
w(AUB) = u(A) + u(B), VA, B C C such that AN B = ().

For example, the higher the tobacco
consumption, the more likely a
patient suffers a lung cancer.

Lung cancer

u({speaking Chinese, coding in Java}) = 0.6
u({speaking Chinese, coding in C}) =0.6
u(C) =1

u ({speaking Chinese}) = 0.2
U ({coding in Java}) = 0.4
U ({coding in C}) =0.4

A (non-additive) measure is normalized and monotone:
p(@) =0, p(C) =1, and p(A) < p(B) VACBCC.
u({speaking Chinese, coding in Java}) =1

u({speaking Chinese, coding in C}) =0.7
u(C) =1

Monotonicity is easy to ensure for a linear model but harder to ensure for
a non-linear one.

u ({speaking Chinese}) =0
U ({coding in Java}) =0
U ({codingin C}) =0

Importance of Criteria & Interaction Discrete Choquet Integral: A Brief Intro
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" |mportance of criteria can be measured by the Shapley index:
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In our case, f(c;) = x; is the value of the i-th variable.

From Logistic to Choquistic Regression Choquistic Regression: Interpretation

Interpretation of choquistic regression as a two-stage process:

P(y=1a) = (1+exp( [_wo_wTw
Pu=1le)=(1+en( (1G@-5) )

(1) a (latent) utility degree u = C,(x) € |0, 1] is determined by the
Choquet integral

(2) a discrete choice is made by thresholding u at
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Choquistic Regression: Parameter Estimation Experimental Evaluation
dataset CREnm LR & KLR-ply W KLR-rbf W MORE BB
, _ ) L. DBS 2226+.0380 (4) .1803+.0336 (1) .2067+.0447 (3) .1922+.0501 (2) .2541+.0142 (5)
ML estimation leads to a constrained optimization problem: CPU .0457+.0338 (2)  .0430+.0318 (1)  .0586+.0203 (3)  .0674+.0276 (4) .1033+.0681 (5)
BCC 2939+.0100 (4)  .2761+.0265 (1)  .3102+.0386 (5)  .2859+.0329 (3)  .2781+.0219 (2)
MPG 0688+.0098 (2)  .0664+.0162 (1)  .0729+.0116 (4) .0705+.0122 (3)  .0800+.0198 (5)
n n 20% ESL 0764+.0201 (3)  .0747+.0243 (1)  .0752+.0117 (2)  .0794+.0134 (4)  .1035+.0332 (5)
. ; ; ; MMG 1816+.0140 (3)  .1752+.0106 (2)  .1970+.0095 (4)  .2011+.0123 (5)  .1670+.0120 (1)
min vy E (1 — y(z)) (Cm(w(z)) — 5) + g log (1 + eXP(_’Y (Cm(w(z)) - 5))) ERA 20074+.0123 (2)  .29224.0096 (1)  .3011+.0132 (3)  .3250+.0172 (5)  .3040+.0192 (4)
m,y,[ 1 1 LEV 15274+.0138 (1)  .1644+.0106 (4) .1570+.0116 (2)  .1577+.0124 (3)  .1878+.0242 (5)
— - CEV .0441+.0128 (1)  .1689+.0066 (5) .0571+.0078 (3)  .0522+.0085 (2)  .0690+.0408 (4)
] avg. rank 2.4 1.9 3.3 3.4 4
subject to: DBS 1560+.0405 (3)  .1443+.0371 (2) .1845+.0347 (5) .1628+.0269 (4) .1358+.0432 (1)
0<B<1 CPU 0156+.0135 (1)  .0400+.0106 (3)  .0377+.0153 (2)  .0442+.0223 (5)  .0417+.0198 (4)
=M = conditions on utility BCC 2871+.0358 (4)  .2647+.0267 (2)  .2706+.0295 (3)  .2879+.0269 (5)  .2616+.0320 (1)
. MPG 0641+.0175 (1)  .0684+.0206 (2)  .1462-+.0218 (5) .1361+.0197 (4)  .0700+.0162 (3)
0<~ threshold and precision 509% ESL 0660+.0135 (1)  .0697+.0144 (3)  .0704+.0128 (5) .0699+.0148 (4)  .0690+.0171 (2)
MMG 1736+.0157 (3)  .17104.0161 (2)  .1859-.0141 (4)  .1900+.0169 (5)  .1604-.0139 (1)
- ERA .3008+.0135 (3)  .3054+.0140 (4) .2907-+.0136 (1)  .3084+.0152 (5)  .2928+.0168 (2)
E : m(T) —1 LEV 1357+.0122 (1) .1641+.0131 (4)  .1500+.0098 (3)  .1482+.0112 (2)  .1658+.0202 (5)
normalization and CEV .0346+.0076 (1)  .1667+.0093 (5)  .0357+.0113 (2)  .0393+.0090 (3)  .0443+.0080 (4)
o TCC avg. rank 2 3 3.3 4.1 2.6
monotonicity of the — DBS .13631£.0380 (2) .1409+.0336 (4) .14221.0498 (5) .1386+.0521 (3) .09744.0560 (1)
oA ) > C . CPU 0089+.0126 (1)  .0366+.0068 (4)  .0329+.0295 (2)  .0384+4.0326 (5)  .0342+.0232 (3)
non-additive measure Z m(BU{ci}) 20 VACC,Ve; el BCC 2631+.0424 (2)  .2660+.0483 (3)  .2784+.0277 (4)  .20374.0297 (5)  .2526+.0472 (1)
BCA\{c;} MPG 0526+.0263 (1)  .0538+.0282 (2)  .0669+.0251 (4)  .0814+.0309 (5) .0656+.0248 (3)
- 80% ESL 0517+.0235 (1)  .0602+.0264 (2)  .0654+.0228 (3) .0718+.0188 (5) .0657+.0251 (4)
MMG .1584+.0255 (2)  .1683+.0231 (3)  .1798+.0293 (4)  .1853+.0232 (5)  .1521+.0249 (1)
ERA 2855+.0257 (1) .2932+.0261 (4)  .2885+.0302 (2)  .2951+.0286 (5) .2894+.0278 (3)
: . : : : LEV 1312+.0186 (1)  .1662+.0171 (5)  .1518+.0104 (3)  .1390+.0129 (2)  .1562+.0252 (4)
> solution with sequential quadratic programming CEV  .0221+.0001 (1) .1643+.0184 (5) .0376+.0001 (3) .0262+.0067 (2)  .0408+.0090 (4)
avg. rank 1.3 3.6 3.3 4.1 2.7
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Conclusions & Outlook

We advocate the use of the discrete Choquet integral as an aggregation
operator in machine learning, especially in learning monotone models.

As a concrete application, we have proposed choquistic regression, a
generalization of logistic regression.

First experimental results confirm advantages of the Choquet integral.

Ongoing work: Restriction to k-additive measures, for a properly chosen k

—full flexibility is normally not needed and may even lead to overfitting the data

—advantages from a computational point of view

—key question: how to find a suitable k in an efficient way?
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