Learning Monotone Nonlinear Models using the Choquet Integral

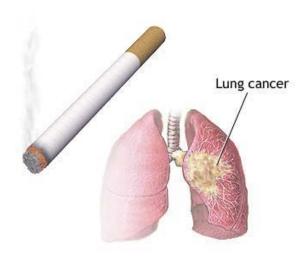
Ali Fallah Tehrani, Weiwei Cheng, Krzysztof Dembczynski, Eyke Hüllermeier

Knowledge Engineering & Bioinformatics Lab Department of Mathematics and Computer Science Marburg University, Germany

ECMLPKDD, Athens Greece, September 2011

Monotonicity

Incorporating background knowledge, such as *monotonicity*, into the learning process is an important aspect in machine learning research.



For example, the higher the tobacco consumption, the more likely a patient suffers a lung cancer.

Monotonicity

For a linear model $Y = \sum_{i=1}^{m} \alpha_i X_i + \epsilon$:

- Monotonicity is easy to ensure (signs of coefficients);
- Easy to interpret. The direction and strength of influence of each predictor are reflected by the corresponding coefficient;
- **But** lack of flexibility.

For a nonlinear model, e.g., $Y = \sum_{i=1}^{m} \alpha_i X_i + \sum_{1 \le i < j \le m} \alpha_{ij} X_i X_j + \epsilon$:

- More flexible;
- **But** difficult to find simple global constraints to ensure monotonicity, as $\partial Y/\partial X_i = \alpha_i + \sum_{j \neq i} \alpha_{ij} X_j$, which depends on all other attributes;
- Harder to interpret.

Outline of the Talk

Contribution:

- We propose the use of the Choquet integral as a flexible and expressive aggregation operator, which is monotone and provides important insights into the data.
- As an example, we generalize logistic regression using the Choquet integral, leading to choquistic regression.

Outline:

- (1) Introduction to non-additive measures and Choquet integral
- (2) Choquistic regression as a generalization of logistic regression
- (3) First experimental results

Let $C = \{c_1, \ldots, c_m\}$ be a finite set and $\mu(\cdot)$ a measure $2^C \to [0, 1]$. For each $A \subseteq C$, we interpret $\mu(A)$ as the *weight* of the set A.

C = {speaking Chinese, coding in Java, coding in C}

For an additive measure:

$$\mu(A \cup B) = \mu(A) + \mu(B), \ \forall A, B \subseteq C \text{ such that } A \cap B = \emptyset.$$

 μ ({speaking Chinese}) = 0.2 μ ({coding in Java}) = 0.4 μ ({coding in C}) = 0.4

 μ ({speaking Chinese, coding in Java}) = 0.6 μ ({speaking Chinese, coding in C}) = 0.6 μ (C) = 1

A (non-additive) measure is normalized and monotone:

 $\mu(\emptyset)=0,\ \mu(C)=1\text{, and }\mu(A)\leq \mu(B)\quad\forall\,A\subseteq B\subseteq C.$

 μ ({speaking Chinese}) = 0 μ ({coding in Java}) = 0 μ ({coding in C}) = 0

 μ ({speaking Chinese, coding in Java}) = 1 μ ({speaking Chinese, coding in C}) = 0.7 μ (C) = 1

KE BI

For an additive measure:

- There is no possibility to model interaction between criteria.
- $\mu(\{c_i\})$ is a natural quantification of the importance of c_i .

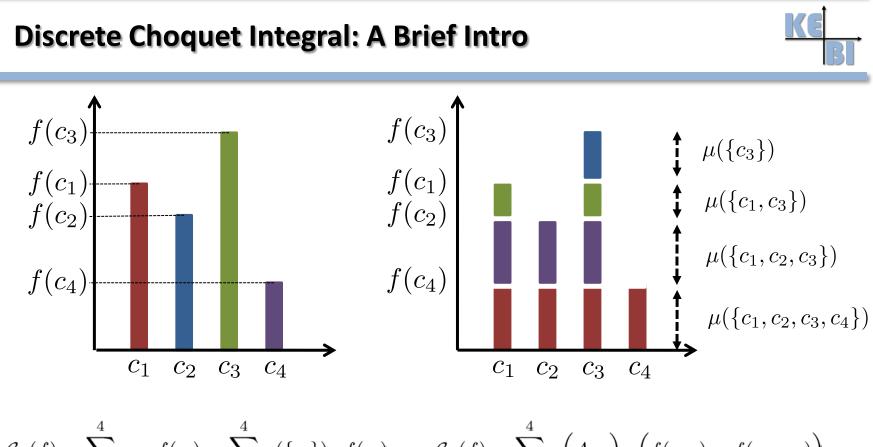
For a non-additive measure:

Importance of criteria can be measured by the Shapley index:

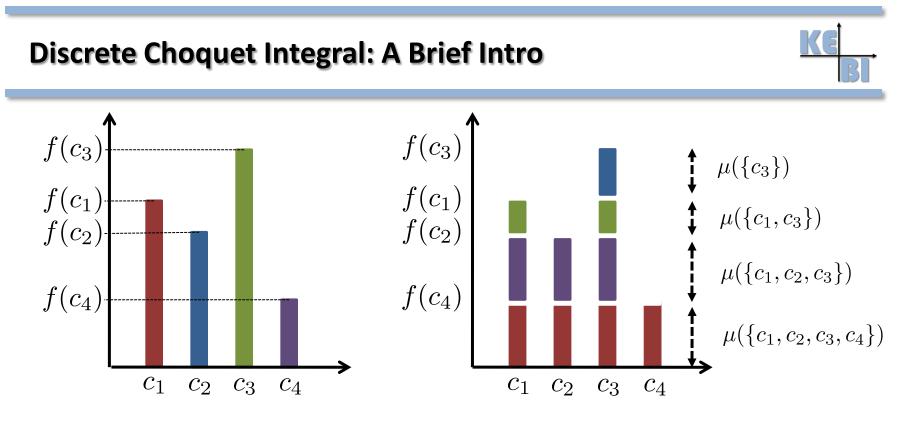
$$\varphi(c_i) = \sum_{A \subseteq C \setminus \{c_i\}} \frac{1}{m\binom{m-1}{|A|}} \left(\mu(A \cup \{c_i\}) - \mu(A) \right).$$

Interactions between criteria can be measured by the interaction index:

$$I_{i,j} = \sum_{A \subseteq C \setminus \{c_i, c_j\}} \frac{\mu(A \cup \{c_i, c_j\}) - \mu(A \cup \{c_i\}) - \mu(A \cup \{c_j\}) + \mu(A)}{(m-1)\binom{m-2}{|A|}} .$$



$$\mathcal{C}_{\mu}(f) = \sum_{i=1}^{n} w_i \cdot f(c_i) = \sum_{i=1}^{n} \mu(\{c_i\}) \cdot f(c_i) \qquad \mathcal{C}_{\mu}(f) = \sum_{i=1}^{n} \mu(A_{(i)}) \cdot \left(f(c_{(i)}) - f(c_{(i-1)})\right)$$



The **discrete Choquet integral** of $f : C \to \mathbb{R}_+$ with respect to μ is defined as follows:

$$\mathcal{C}_{\mu}(f) = \sum_{i=1}^{m} \left(f(c_{(i)}) - f(c_{(i-1)}) \right) \cdot \mu(A_{(i)}) ,$$

where (·) is a permutation of $\{1, ..., m\}$ such that $0 \le f(c_{(1)}) \le f(c_{(2)}) \le ... \le f(c_{(m)})$, and $A_{(i)} = \{c_{(i)}, ..., c_{(m)}\}$.

In our case, $f(c_i) = x_i$ is the value of the *i*-th variable.

7/15

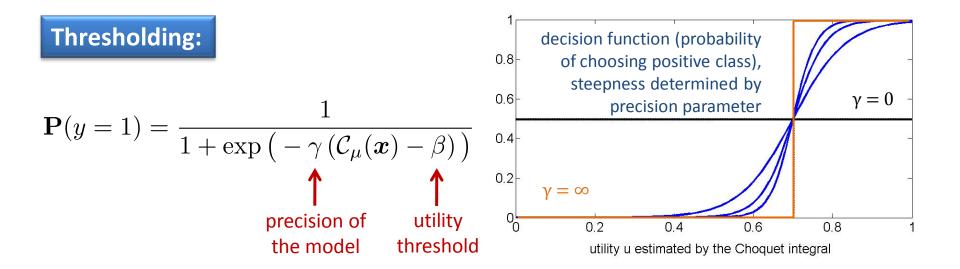
Logistic
$$\mathbf{P}(y = 1 | \mathbf{x}) = (1 + \exp((-w_0 - \mathbf{w}^\top \mathbf{x})))^{-1}$$

Choquistic $\mathbf{P}(y = 1 | \mathbf{x}) = (1 + \exp((-\gamma (\mathcal{C}_{\mu}(\mathbf{x}) - \beta)))^{-1})$
Choquet integral of
(normalized) attribute values

It can be shown that, by choosing the parameters in a proper way, logistic regression is indeed a special case of choquistic regression.

Interpretation of choquistic regression as a two-stage process:

- (1) a (latent) utility degree $u = \mathcal{C}_{\mu}(\boldsymbol{x}) \in [0,1]$ is determined by the Choquet integral
- (2) a discrete choice is made by thresholding u at β



Choquistic Regression: Interpretation

- KE
- The non-additive measure µ specifies the importance of subsets of predictor variables, i.e., their influence on the probability of the positive class.
- Due to the non-additivity of the measure, it becomes possible to model interaction effects, thereby expressing complementarity and redundancy of variables.

For example, what is the **joint effect** of {*smoking,age*} on the probability of cancer, as opposed to the sum of their individual influences?

- Formally, measures like Shapley index and interaction index can be used, respectively, to quantify the importance of individual and the interaction between different variables.
- **Monotonicity** is obviously ensured by the Choquet integral.

Choquistic Regression: Parameter Estimation

- We need to identify the following model parameters:
 - the non-additive measure μ
 - The utility threshold β
 - The precision parameter γ
- The non-additive measure, in its most general form, has a number of parameters which is exponential in the number of attributes.
 → critical from a computational complexity point of view
- We follow a maximum likelihood (ML) approach; the Choquet integral is expressed in terms of its Möbius transform:

$$\mathcal{C}_{\mu}(f) = \sum_{T \subseteq C} \boldsymbol{m}(T) \times \min_{c_i \in T} f(c_i) .$$

Choquistic Regression: Parameter Estimation

KE

ML estimation leads to a constrained optimization problem:

$$\min_{\boldsymbol{m},\gamma,\beta} \gamma \sum_{i=1}^{n} (1-y^{(i)}) \left(\mathcal{C}_{\boldsymbol{m}}(\boldsymbol{x}^{(i)}) - \beta \right) + \sum_{i=1}^{n} \log \left(1 + \exp(-\gamma \left(\mathcal{C}_{\boldsymbol{m}}(\boldsymbol{x}^{(i)}) - \beta \right) \right) \right)$$

subject to:

$$\begin{array}{c} 0 \leq \beta \leq 1 \\ 0 < \gamma \end{array} \quad \begin{array}{c} \text{conditions on utility} \\ \text{threshold and precision} \end{array}$$

 \rightarrow solution with sequential quadratic programming

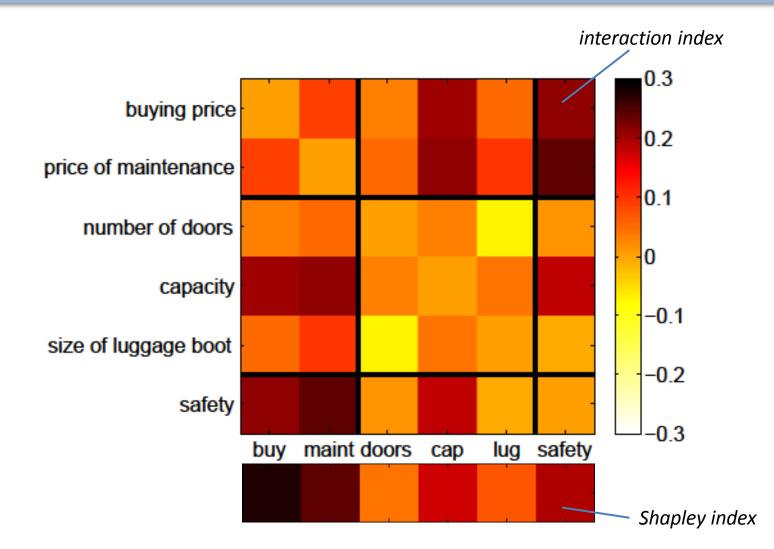
Experimental Evaluation

_	dataset	CR	LR	KLR-ply	KLR-rbf	MORE
20%	DBS	.2226±.0380 (4)	.1803±.0336 (1)	.2067±.0447 (3)	.1922±.0501 (2)	.2541±.0142 (5)
	CPU	.0457±.0338 (2)	.0430±.0318 (1)	.0586±.0203 (3)	.0674±.0276 (4)	.1033±.0681 (5)
	BCC	.2939±.0100 (4)	$.2761 \pm .0265$ (1)	.3102±.0386 (5)	.2859±.0329 (3)	.2781±.0219 (2)
	MPG	.0688±.0098 (2)	$.0664 \pm .0162$ (1)	.0729±.0116 (4)	.0705±.0122 (3)	.0800±.0198 (5)
	ESL	.0764±.0291 (3)	.0747±.0243 (1)	.0752±.0117 (2)	.0794±.0134 (4)	.1035±.0332 (5)
	MMG	.1816±.0140 (3)	.1752±.0106 (2)	.1970±.0095 (4)	.2011±.0123 (5)	$.1670 \pm .0120$ (1)
	ERA	.2997±.0123 (2)	.2922±.0096 (1)	.3011±.0132 (3)	.3259±.0172 (5)	.3040±.0192 (4)
	LEV	.1527±.0138 (1)	.1644±.0106 (4)	.1570±.0116 (2)	.1577±.0124 (3)	.1878±.0242 (5)
	CEV	.0441±.0128 (1)	.1689±.0066 (5)	.0571±.0078 (3)	.0522±.0085 (2)	.0690±.0408 (4)
	avg. rank	2.4	1.9	3.3	3.4	4
_	DBS	.1560±.0405 (3)	.1443±.0371 (2)	.1845±.0347 (5)	.1628±.0269 (4)	.1358±.0432 (1)
	CPU	.0156±.0135 (1)	.0400±.0106 (3)	.0377±.0153 (2)	.0442±.0223 (5)	.0417±.0198 (4)
50%	BCC	.2871±.0358 (4)	.2647±.0267 (2)	.2706±.0295 (3)	.2879±.0269 (5)	.2616±.0320 (1)
	MPG	$.0641 \pm .0175$ (1)	.0684±.0206 (2)	.1462±.0218 (5)	.1361±.0197 (4)	.0700±.0162 (3)
	ESL	.0660±.0135 (1)	.0697±.0144 (3)	.0704±.0128 (5)	.0699±.0148 (4)	.0690±.0171 (2)
	MMG	.1736±.0157 (3)	.1710±.0161 (2)	.1859±.0141 (4)	.1900±.0169 (5)	$.1604 \pm .0139$ (1)
	ERA	.3008±.0135 (3)	.3054±.0140 (4)	.2907±.0136 (1)	.3084±.0152 (5)	.2928±.0168 (2)
	LEV	.1357±.0122 (1)	.1641±.0131 (4)	.1500±.0098 (3)	.1482±.0112 (2)	.1658±.0202 (5)
	CEV	.0346±.0076 (1)	.1667±.0093 (5)	.0357±.0113 (2)	.0393±.0090 (3)	.0443±.0080 (4)
80%	avg. rank	2	3	3.3	4.1	2.6
	DBS	.1363±.0380 (2)	.1409±.0336 (4)	.1422±.0498 (5)	.1386±.0521 (3)	.0974±.0560 (1)
	CPU	.0089±.0126 (1)	.0366±.0068 (4)	.0329±.0295 (2)	.0384±.0326 (5)	.0342±.0232 (3)
	BCC	.2631±.0424 (2)	.2669±.0483 (3)	.2784±.0277 (4)	.2937±.0297 (5)	.2526±.0472 (1)
	MPG	.0526±.0263 (1)	.0538±.0282 (2)	.0669±.0251 (4)	.0814±.0309 (5)	.0656±.0248 (3)
	ESL	.0517±.0235 (1)	.0602±.0264 (2)	.0654±.0228 (3)	.0718±.0188 (5)	.0657±.0251 (4)
	MMG	.1584±.0255 (2)	.1683±.0231 (3)	.1798±.0293 (4)	.1853±.0232 (5)	.1521±.0249 (1)
	ERA	.2855±.0257 (1)	.2932±.0261 (4)	.2885±.0302 (2)	.2951±.0286 (5)	.2894±.0278 (3)
	LEV	.1312±.0186 (1)	$.1662 \pm .0171$ (5)	.1518±.0104 (3)	.1390±.0129 (2)	.1562±.0252 (4)
	CEV	.0221±.0091 (1)	.1643±.0184 (5)	.0376±.0091 (3)	.0262±.0067 (2)	.0408±.0090 (4)
	avg. rank	1.3	3.6	3.3	4.1	2.7
_			topo classifiar	nonlinear classifier		

monotone classifier

nonlinear classifier

Importance & Interactions (Car Evaluation)



Conclusions & Outlook

- We advocate the use of the discrete Choquet integral as an aggregation operator in machine learning, especially in learning monotone models.
- As a concrete application, we have proposed choquistic regression, a generalization of logistic regression.
- First experimental results confirm advantages of the Choquet integral.
- **Ongoing work:** Restriction to k-additive measures, for a properly chosen k
 - full flexibility is normally not needed and may even lead to overfitting the data
 - advantages from a computational point of view
 - key question: how to find a suitable k in an efficient way?

