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Preference-based Reinforcement Learning
Motivating example: Medical treatment design

Direct policy search (DPS)
Evolutionary direct policy search approach

Preference-based Evolutionary Direct policy search (PB-EDPS)
Preference-based Racing (PBR)



I Many problems where it is hard to define a reasonable reward
function

I task of driving [Abbeel and Ng, 2004]
I medical treatment design [Zhao et al., 2009]

I Aggregation of rewards: one may not always be willing/able
to combine rewards

I Multi-objective reinforcement learning

I Episodic setup: h following policy π, h′ following policy π′

I Given h and h′, it might be easier to decide which one is
preferred (at least in some problems)

I The piece of information we want to learn from is preferences
over simulations!



Motivating example: medical treatment design [Zhao
et al., 2009]

I Virtual patient with cancer
I State captures some essential factors in cancer treatment
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I Episodic setup: an episode corresponds to a treatment of a
patient over six months

I The action is the dosage level itself
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I Transitions:
I The tumor is constantly growing (without treatment or if the

dosage is too low)
I The higher dose selected, the higher toxicity evolves, and the

more tumor growth is inhibited.
I The higher the toxicity and the tumor size, the higher the

probability of the patient’s death.



Motivating example [Zhao et al., 2009]

I Terminal state: end of sixth month or patient dies
I The reward is defined based on the wellness of patient

I tumor size: ↗ -5, → 5, ↘ 15
I toxicity level: ↗ -5, → 0, ↘ 5
I The reward assigned to death is -60

I Based on the wellness of patients, it is straightforward to
define a preference relation over treatments

I Given two trajectories h1 and h2 generated by following two
different treatments
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I Otherwise Pareto dominance
I h1 � h2 if the tumor size AND the toxicity level both are

smaller under h1



Point of departure: preferences

I There is no reward function (hard to define a reasonable one)
and the goal is not to find a reward function!!!

I The piece of information we want to learn from is preferences
over trajectories!

I Partial order ≺ over trajectories h ∈ H(T )

I From a tutor or an expert
I Extracted from trajectories



Decision model

I Decision model: “lifting” the preference relation ≺ on H(T )

to a preference relation � on the space of policies

I Intermezzo:
each policy π generate a probability distribution over the set
of trajectories (for a fixed MDP) which is denoted by Pπ

I policy ≡ random variable whose realizations are trajectories

I s(π, π′) = Eh∼Pπ ,h′∼Pπ′ [I{h ≺ h′}]
I Probability of that π′ beats π

I Ordinal decision model

π � π′ if and only if s(π′, π) < s(π, π′)

I Alternative decision model?



Preference-based Evolutionary
direct policy search



Direct policy search (DPS)

1. Parametric policy space: Π = {πΘ|Θ ∈ Rd}, for example the
space of linear policies: πw(s) = wT s if S ⊆ Rd

2. The policy search can be viewed as an optimization task: Π is
the search space, some policy evaluation is the target function
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Evolutionary direct policy search approach

I [Heidrich-Meisner and Igel, 2009]
I Covariance Matrix Adaptation Evolution Strategy

(CMA-ES)[Hansen and Kern, 2004]
I It maintains a distribution over the solution space ( in this case

over the space of policies)

I Expected total reward is optimized that can be estimated
based on finite set of trajectories {h1, . . . ,hn} ∼ Pπ as

ρ̂(n)
π =

1

n

n∑
i=1

V (hi )

where V (.) is the cummulative reward



Evolutionary direct policy search [Heidrich-Meisner and
Igel, 2009]

I Repeat these three steps until convergence
1. Generate a population of candidate solutions (in this case, a

set of policies with different parameters).
I πΘ1 , . . . , πΘλ where Θ1, . . . ,Θλ ∼ N (m,Σ)

2. Evaluate the candidate solutions (estimate the performance of
the policies based on simulations {h1, . . . ,hn} ∼ PπΘi

).

ρ̂(n)
πΘi

=
1

n

n∑
i=1

V (hi )

and select the best µ individuals
3. Update m and Σ by using the parameters of best µ

individuals/policies



Racing algorithm

(a) [Heidrich-Meisner and Igel, 2009]

I In the bandit literature, these algorithms are called PAC
bandits



Basic idea

1. Direct motivation: the Evolution strategy optimizers need only
ranking, but they do not need the function values themselves

2. GOAL: devise a racing algorithm that utilizes only pairwise
comparison of random samples (in this case trajectories) and
is able to select the best policies with respect to the decision
model (�)

3. This naturally gives rise to a preference-based policy search
method



Recall the decision model

I s(π, π′) = Eh∼Pπ ,h′∼Pπ′ [I{h ≺ h′}]
I Ordinal decision model

π � π′ if and only if s(π′, π) < s(π, π′)

I There can be preferential cycles
I π � π′ AND π′ � π′′ AND π′′ � π
I “select the best options” is not a well-defined task

I Practical solution: surrogate ranking model
I Given π1, . . . , πK

πi �C πj ⇔ di < dj

where di = |{k : πk � πi , k 6= i}|
I It is a complete preorder since it has a numeric representation

(di )
I Unfortunately, the preference relation �C depends on the set

of policies considered



An example for the surrogate ranking model

π1

π2

π1

π2

π3

π4

π5

I edge ⇔ πi � πj
I �C

I d2 = 4
I d1 = 3
I d3 = d4 = d5 = 1



Concentration property of s̄(., .)

I s(π, π′) = Eh∼Pπ ,h′∼Pπ′ [I{h ≺ h′}]
I π � π′ if and only if s(π′, π) < s(π, π′)

I πi �C πj ⇔ di < dj where di = |{k : πk � πi , k 6= i}|
I s(π, π′) can be estimated based on finite sets of trajectories
{h1, . . . ,hn} ∼ Pπ and {h′1, . . . ,h′n} ∼ Pπ′ as

s̄(π, π′) =
1

nn′

n∑
i=1

n′∑
j=1

I{hi ≺ h′j}

I Hoeffding-bound for U-statistics, two-sample case

I Hoeffding, 1963, §5b: For any ε > 0

P
(∣∣s̄(π, π′)− s(π, π′)

∣∣ ≥ ε) ≤ 2 exp
(
−2 min(n, n′)ε2

)
I Empirical Bernstein-bound?



Preference-based racing

I We have an efficient estimator for s(πi , πj)

I We can calculate confidence interval for s̄(πi , πj)

I K = 7,K ′ = 3
edge ⇔ s̄(πi , πj) is significantly bigger than s̄(πj , πi )

π1 π2 π3 π4 π5 π6 π7

I Expected sample complexity: Even-Dar et al. [2002]
(∆i ,j = |1/2− s(πi , πj)|)



Preference-based evolutionary direct policy search

I Repeat these three steps until convergence
1. Generate a population of candidate solutions (in this case, a

set of policies with different parameters).
I πΘ1 , . . . , πΘλ where Θ1, . . . ,Θλ ∼ N (m,Σ)

2. Select the best µ individuals by using Preference-based Racing
algorithm

3. Update m and Σ by using the parameters of best µ
individuals/policies



The relation of � and �C (only locally valid)

πi is a Condorcet winner among a set of
policies π1, . . . , πK if π` � πi for all
` 6= i

π2

π3

π4

π5

π1

I If the Condorcet winner exists, it is the largest element of �C

Smith set is the smallest non-empty set
D ⊂ {π1, . . . , πK} satisfying πk � πi
for all πi ∈ D and πj ∈ {π1, . . . , πK}\D

π1

π2

π3

π4

π5

I Proposition Let Π = {π1, . . . , πK} be a set of random
variables for which there exists a Smith set D of size KD.
Then for any πi ∈ D and πj ∈ Π \ D, πj �C πi .

d5 = 1 d4 = 1 d3 = 1 d1 = 3 d2 = 4



Issues to be discussed

I The existence of global optima

I If there exists a global Condorcet winner, under what
assumptions we can find it (w.h.p) by using Evolution strategy
along with Preference-based racing algorithm?

I Hoeffding-bound is loose: the use of Clopper-Pearson-type
confidence bound for trinomial random variables
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Preference-based racing for �C

I One can estimate s(π, π′) based on finite set of trajectories

I {h1, . . .hn} ∼ Pπ and
{
h′1, . . .h

′
n′
}
∼ Pπ′

s̄(π, π′) =
1

nn′

n∑
i=1

n′∑
j=1

I{hi ≺ h′j}

I Incomparable trajectories: solution by [Hemelrijk, 1952]

I≺{x , x ′} =


1 if x ≺ x ′

0 if x ′ ≺ x

1/2 otherwise

I Probabilistic interpretation: if two samples are incomparable,
then we select one of them being preferred with probability
1/2

I s(π, π′) = 1− s(π′, π)



Preference-based racing: optimization view

I Preference-based case: PBR(π1, . . . , πK ,K
′, nmax, δ)

argmax
I⊆{1,...,K}: |I |=K ′

∑
i∈I

∑
j 6=i

I{πj �C πi}

with probability at least 1− δ
I Since s(πi , πj) = 1− s(πj , πi )

argmax
I⊆{1,...,K}: |I |=K ′

∑
i∈I

∑
j 6=i

I{s(πj , πi ) > 1/2} (1)

I We have an efficient estimator of s(πi , πj)



Algorithm 1 PBR(π1, . . . , πK ,K
′, nmax, δ)

1: A = {(i , j)| 1 ≤ i , j ≤ K}, n = 0
2: while (n ≤ nmax) ∧ (|A| > 0) do
3: for all i appearing in A do

4: h
(n)
i ∼M and πi . Generate trajectories

5: end for
6: for all (i , j) ∈ A do

7: Update s̄i,j = 1
n2

∑n
`=1

∑n
`′=1 I{h

(`)
i ≺ h

(`′)
j }

8: ci,j =
√

1
2n

log 2K2nmax
δ

, ui,j = ŝi,j + ci,j , `i,j = ŝi,j − ci,j
9: end for

10: for i = 1→ K do
11: zi = |{j : ui,j < 1/2, j 6= i}|, oi = |{j : `i,j > 1/2, j 6= i}|
12: end for
13: C =

{
i : K − K ′ <

∣∣{j : K − zj < oi}
∣∣} . select

14: D =
{
i : K ′ <

∣∣{j : K − oj < zi}
∣∣} . discard

15: for (i , j) ∈ A do
16: if (i , j ∈ C ∪ D) ∨ (1/2 6∈ [`i,j , ui,j ]) then
17: A = A \ (i , j) . Do not update ŝi,j any more
18: end if
19: end for
20: n = n + 1
21: end while
22: return the top-K ′ options for which the most s̄i,j above 1/2



Cancer treatment

1. State space consists of toxicity level and tumor size (X ,Y )

2. Linear policy space

3. Each policy search method were trained 100 times and each
policy were evaluated on 300 virtual patients

4. 6-months treatment

5. Transitions: Xt+1 = Xt + ∆Xt and Yt+1 = Yt + ∆Yt

∆Yt = [a1 ·max(Xt ,X0)− b1 · (Dt − d1)]× I{Yt > 0}
∆Xt = a2 ·max(Yt ,Y0)− b2 · (Dt − d2)

6. Probability of death: 1− exp(− exp(c0 + c1Xt + c2Yt))



Cancer treatment
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Random (0.355)
Const. π(s) = 0.1 (0.405)
Const. π(s) = 0.4 (0.318)
Const. π(s) = 0.7 (0.383)
Const. π(s) = 1.0 (0.448)
SARSA(λ) (0.337)
PBPI (0.259)
EDPS (0.283)
PB-EDPS (0.209)
Pareto front

(b) 100 repetitions of training process
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