Preference-Based CBR: A Search-Based Problem Solving Framework

Amira Abdel-Aziz, Weiwei Cheng, Marc Strickert, Eyke Hüllermeier

Computational Intelligence Group Department of Mathematics and Computer Science Marburg University, Germany

□ Basic Ideas of Preference-based CBR

□ Case Based Inference (CBI)

CBR as a Preference-Guided Search

Case Study

Basic Ideas of Preference-based CBR

- The work done in this paper is a continuation of previous work by (E. Hüllermeier and P. Schlegel, Preference-based CBR: First steps toward a methodological framework-ICCBR 2011).
- Previous work constructed a case-based inference methodology to predict a most plausible candidate solution given a set of preferences on other solutions.
- In this paper we extend previous work by embedding this method in a more general search-based problem solving framework.

A search-based problem solving framework embedding a method for predicting a most plausible candidate solution given a set of preferences on other solutions.

This preference-based framework well accommodates the uncertain and approximate nature of case-based problem solving, by allowing learning from comparing alternative solution pairs instead of providing just a single correct solution at the end.

Experience
$$\longleftrightarrow$$
 $(x, y) \in \mathbb{X} \times \mathbb{Y}$

x is an element from **problem** space \mathbb{X}

y is an element from **solution** space \mathbb{Y}

solution y optimally solves problem x

□ Assumes existence of a "correct" solution

Potential loss of information

Limited guidance in case of failed suggestion

Preference-based Knowledge Representation

Experience
$$\longleftrightarrow$$
 $(x, y \succ z) \in \mathbb{X} \times \mathbb{Y}$
 $y \succ_x z$

 $\boldsymbol{y}~$ is more preferred than $~\boldsymbol{z}~$ as a solution for $~\boldsymbol{x}~$

It is not required that one of these solutions is optimal

□ No loss of information

A ranking of candidate solutions is given for guidance of finding a solution

Case-based Representation of Experience

Drug discovery: Finding ligands (small molecules) with high binding affinity to a target protein.

CBR perspective: protein = problem, ligand = solution

Case-based Representation of Experience

- Showing two docking poses to a domain expert (chemist, pharmacist), she can easily decide which of the molecules fits better.
- In contrast to this, she will find it difficult to assign a numerical score to an individual molecule.
- Moreover, the notion of "optimality" is not well defined (the space of molecules is huge and only partly known).

Oracle

Expert providing valid knowledge from which our preferences are created:

- □ Expensively computed reference
- Human expert in a field: pharmacist, doctor, cook, ...etc.

Expensive computer program

Problem Solving Framework

 y^* is the ideal solution for x_0 Assumption: $y_4 \succ_{x_0} y_1$ because $\Delta_Y(y_4, y^*) \leq \Delta_Y(y_1, y^*)$ 10

□ Basic Ideas of Preference-based CBR

Case Based Inference (CBI)

CBR as a Preference-Guided Search

Case Study

Preferences are created based on the idea that preference of $\,y\,\in\,\mathbb{Y}\,$

depends on its distance $\,\Delta_Y(y,y^*)\geq\! heta\,$ to an ideal solution $\,y^*$

where $\Delta_Y(y,y^*)$ is a "degree of suboptimality" of y

and the probability of observing a preference $y \succ z$

is

$$\mathbf{P}(y \succ z) = \left(1 + \exp\left(-\beta(\Delta_Y(z, y^*) - \Delta_Y(y, y^*))\right)\right)^{-1}$$

measure of precision

A Discrete Choice Model for Preferences on Solutions

A Discrete Choice Model for Preferences on Solutions

Given set of observed preferences

$$\mathcal{D} = \{y^{(i)} \succ z^{(i)}\}_{i=1}^N$$

assumed to be representative of current problem x

what is the most plausible "ideal" solution for $\,x\,$

among a given set of candidates $\,\mathbb Y_0 \, \subset \, \mathbb Y\,$?

Case-based Inference (Maximum Likelihood Estimation)

Each pairwise preference provides a hint at the ideal solution!

Case-based Inference (Maximum Likelihood Estimation)

To estimate parameter vector $\ \ heta^* = (y^*, \ eta^*) \in \mathbb{Y} imes \mathbb{R}_+$

the log-likelihood of $\theta = (y, \beta)$ is given by

$$\ell(\theta) = \ell(y,\beta) = -\sum_{i=1}^{N} \log\left(1 + \exp\left(-\beta(\Delta(z^{(i)},y) - \Delta(y^{(i)},y))\right)\right)$$

CBI (Case Based Inference) equation

The maximum likelihood estimation $\theta_{ML} = (y^{ML}, \beta^{ML})$ of θ^* is given by

$$\theta_{ML} = (y^{ML}, \beta^{ML}) = \operatorname{argmax}_{y \in \mathbb{Y}, \beta \in \mathbb{R}_+} \ell(y, \beta)$$

□ Basic Ideas of Preference-based CBR

□ Case Based Inference (CBI)

CBR as a Preference-Guided Search

Case Study

Given a new problem query x_0 retrieve the Knearest neighbors of this problem, those with the smallest Δ_X from x_0

The preferences of the nearest neighbors are collected from the CB and are used to guide the search process.

The search for a solution starts with an initial candidate $\,y^*\,\in\,\mathbb Y\,$ calculated by

$$y^* \leftarrow \operatorname{CBI}(\mathcal{P}, \, \mathbb{Y}_0)$$

Then the solution is iterated L times to reach final y^*

L=number of queries to oracle

solution space

Start with an initial solution

- Start with an initial solution
- Consider the neighbors of the current solutions as new candidates.

solution space

- Start with an initial solution
- Consider the neighbors of the current solutions as new candidates.
- Select a promising neighbor, compare with current solution and adopt the better one.

- Start with an initial solution
- Consider the neighbors of the current solutions as new candidates.
- Select a promising neighbor, compare with current solution and adopt the better one.
- Repeat till no further improvement or maximum number of iterations reached.

solution space

- Start with an initial solution
- Consider the neighbors of the current solutions as new candidates.
- Select a promising neighbor, compare with current solution and adopt the better one.
- Repeat till no further improvement or maximum number of iterations reached.

x1	y12 > y72	y42 > y41	y76 > y21	y42 > y72
x 2	y05 > y53	y92 > y43	y32 > y56	y65 > y84
x3	y39 > y37	y33 > y67	y65 > y76	y76 > y37
x4	y72 > y98	y47 > y27	y34 > y34	y76 > y65
x 5	y39 > y49	y29 > y81	y32 > y26	y76 > y11
хб	y46 > y11	y46 > y28	y68 > y28	y22 > y42

Problems are stored together with observed pairwise preferences.

x 1	y12 > y72	y42 > y41	y76 > y21	y42 > y72
x 2	y05 > y53	y92 > y43	y32 > y56	y65 > y84
x 3	y39 > y37	y33 > y67	y65 > y76	y76 > y37
x4	y72 > y98	y47 > y27	y34 > y34	y76 > y65
x 5	y39 > y49	y29 > y81	y32 > y26	y76 > y11
хб	y46 > y11	y46 > y28	y68 > y28	y22 > y42

- Given an new problem, find the nearest neighbors in the case base and collect the associated preferences into an initial preference set.
- The initial solution is then found by applying CBI to this set of preferences (with the complete solution space as candidates).

solution space

 In each iteration, CBI is applied to the neighbors of the current solution to find the most promising candidate.

solution space

- In each iteration, CBI is applied to the neighbors of the current solution to find the most promising candidate.
- The two solutions are compared, the better one is adopted, and the new preference is added to preference set.

solution space

- In each iteration, CBI is applied to the neighbors of the current solution to find the most promising candidate.
- The two solutions are compared, the better one is adopted, and the new preference is added to preference set.
- The process stops after a predefined number of iterations, and the current best solution is returned.

x1	y12 > y72	y42 > y41	y76 > y21	y42 > y72
x 2	y05 > y53	y92 > y43	y32 > y56	y65 > y84
x 3	y39 > y37	y33 > y67	y65 > y76	y76 > y37
x4	y72 > y98	y47 > y27	y34 > y34	y76 > y65
x 5	y39 > y49	y29 > y81	y32 > y26	y76 > y11
x 6	y46 > y11	y46 > y28	y68 > y28	y22 > y42
x 7	¥62 > y22	¥62 > y81	¥71 > y62	¥77 > ¥71

The new problem is stored together with the pairwise preferences collected during the problem solving process.

Case Base

□ Basic Ideas of Preference-based CBR

□ Case Based Inference (CBI)

CBR as a Preference-Guided Search

Case Study

Applications: Drug Discovery Case Study

Ligand molecules bind to protein surface, thereby blocking or enhancing its biochemical activity

Identification and selection of ligands targeting a specific protein is of high interest for drug development

Drug Discovery Case Study

Conclusion

- The preference-based CBR framework presented, is based on representing experience in the form of contextualized preferences.
- □ **Case-based inference** is formalized by means of a probabilistic approach.
- These preferences are used to direct the problem solving process that is formalized as a heuristic search process.

Promising results in two case studies (set completion and drug discovery).

Apply the idea of using preferences for guiding the search process to more **sophisticated search methods**.

- Develop effective methods for case base maintenance, as number of preferences collected in the course of time may become large.
- □ Learning similarity measures to increase efficiency of the preference-guided search procedure.