

Label Ranking

	label ranking
customer 1	MINI > Toyota > BMW >
customer 2	BMW > MINI > Toyo
customer 3	Volvo $>$ BMW $>$ Toyota $>$
customer 4	Toyota $>$ BMW
new customer	???

Given:

- a set of training instances { $\mathbf{x}_k \mid k = 1 \dots m$
- a set of labels $\mathcal{L} = \{\lambda_1, \lambda_2, \dots, \lambda_n\}$
- for each training instance x_k : a set of pairwise preferences of the form $\lambda_i \succ_{\mathbf{x}_k} \lambda_j$

Find:

A ranking function ($\mathbf{X} \rightarrow \Omega$ mapping) that maps each $\mathbf{x} \in \mathbf{X}$ to a ranking $\succ_{\mathbf{x}}$ of \mathcal{L} (permutation $\pi_{\mathbf{x}}$) and generalizes well in terms of a loss function on rankings.

Existing Methods

- Ranking by pairwise comparison Fürnkranz and Hüllermeier, ECML 2003
- Constraint classification Har-Peled, Roth and Zimak, NIPS 2003
- Log linear models for label ranking Dekel, Manning and Singer, NIPS 2003
- essentially reduce label ranking to classification
- are efficient but may come with a loss of information
- may have an improper bias and lack flexibility
- or may produce models that are not easily interpretable

DECISION TREE AND INSTANCE-BASED LEARNING FOR LABEL RANKING

Weiwei Cheng, Jens Hühn and Eyke Hüllermeier

Knowledge Engineering & Bioinformatics Laboratory Department of Mathematics and Computer Science Marburg University, Germany

$$\{ \} \subseteq \mathbf{X}$$

Mallows Model

$$\mathcal{P}(\sigma \,|\, \theta, \pi) = \frac{\exp(-\theta)}{\phi(\theta)}$$

$$\mathcal{P}(\boldsymbol{\sigma} \mid \boldsymbol{\theta}, \pi) = \prod_{i=1}^{k} \mathcal{P}(E(\sigma_i) \mid \boldsymbol{\theta}, \pi) = \frac{\prod_{i=1}^{k} \sum_{\sigma \in E(\sigma_i)} \exp\left(-\boldsymbol{\theta}\right)}{\left(\prod_{i=1}^{n} \frac{1 - \exp(-j\boldsymbol{\theta})}{1 - \exp(-\boldsymbol{\theta})}\right)}$$

Observation σ	Ext
	C
a > b	C
	C

ACKNOWLEDGEMENTS: Weiwei Cheng and Jens Hühn were financially supported by the ICML 2009 Student Scholarship Program. Poster presented at ICML 2009, 26th International Conference on Machine Learning, Montreal, Canada, June 2009

