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Label Ranking
label ranking
customer 1 MINI > Toyota > BMW > Volvo
customer 2 BMW > MINI > Toyota
customer 3 Volvo > BMW > Toyota > MINI
customer 4 Toyota > BMW
new customer 27?7

Given:
— a set of training instances {x; | k=1...m} C X
—asetoflabels £ = { A, Ao, ..., A\, }

— for each training instance x;: a set of pairwise preferences
of the form \; >, A,

Find:

A ranking function (X — {2 mapping) that maps each
x € X to a ranking > of £ (permutation 7y) and
generalizes well in terms of a loss function on rankings.

Existing Methods

— Ranking by pairwise comparison
Furnkranz and Hullermeier, ECML 2003

— Constraint classification
Har-Peled, Roth and Zimak, NIPS 2003

— Log linear models for label ranking
Dekel, Manning and Singer, NIPS 2003

e essentially reduce label ranking to classification
e are efficient but may come with a loss of information
e may have an improper bias and lack tlexibility

e or may produce models that are not easily interpretable

Local Learning Approach
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— Target function is estimated (on demand) in a local way.

— Core part is to estimate a locally constant model.

— Use probabilistic models for rankings, considering
nearby preferences as a representative sample.

Mallows Model
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with center m € €2, spread 0 > 0, and distance d on ().
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Maximum likelihood estimation (MLE) based on observed
(incomplete) rankings o = {074, ..., 0}
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where E(o;) denotes the set of consistent extensions of ;.
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Approximation of the MLE (7, 0) = arg max, g P(o |0, )
with an EM-like estimation procedure.

Label Ranking Tree
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Major modifications compared with regression trees:

1.5Split criterion: seeking a split of 7' (set of rankings) into
T" and T~ that maximizes
T - 0"+ |T7|-0°
7|

2. Stopping criterion: tree is pure OR number of labels in a
node is too small

Main Conclusions from Experiments
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— Local learning is more flexible and can exploit more
preference information.

— Given enough data, IBLR is significantly better than LRT
and CC in terms of predictive accuracy (Kendall’s tau).

— The size of LRT is smaller than expected.
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