LABEL RANKING METHODS BASED ON THE PLACKETT-LUCE MODEL

Label Ranking

earning pairwise

preferences

rning utility functions

	label ranking					
customer 1	MINI > Toyota > BMW > Volvo					
customer 2	BMW > MINI > Toyota					
customer 3	Volvo $>$ BMW $>$ Toyota $>$ MINI					
customer 4	Toyota $>$ BMW					
new customer	???					

Given:

- a set of training instances $\{ \mathbf{x}_i \mid i = 1 \dots N \} \subseteq \mathbf{X}$
- a set of labels $\mathcal{L} = \{\lambda_1, \lambda_2, \dots, \lambda_M\}$
- for each training instance x_i : a set of pairwise preferences of the form $\lambda_i \succ_{\mathbf{x}_i} \lambda_j$

Find:

A ranking function ($\mathbf{X} \rightarrow \Omega$ mapping) that maps each $\mathbf{x} \in \mathbf{X}$ to a ranking $\succ_{\mathbf{x}}$ of \mathcal{L} (permutation $\pi_{\mathbf{x}}$) and generalizes well in terms of a loss function on rankings.

Existing Methods

Reduction to binary	Ranking by pairwise comparison Fürnkranz et al., ECML-03	Learning prefe	
classification	Constraint classification Har-Peled et al., NIPS-03	Learning u	
	Log-linear models for label rankir Dekel et al., NIPS-03	ng (<i>Lin-LL</i>)	

• e.g., Lin-LL minimizes a convex upper bound of the loss

 $\sum_{1 \leq i \leq j \leq M} \begin{cases} 0 \ f_{\pi(i)}(\mathbf{x}) < f_{\pi(j)}(\mathbf{x}) \\ 1 \ f_{\pi(i)}(\mathbf{x}) \geq f_{\pi(j)}(\mathbf{x}) \end{cases},$ namely log $\left[1 + \sum_{1 \leq i \leq j \leq M} \exp\left(f_{\pi(j)}(\mathbf{x}) - f_{\pi(i)}(\mathbf{x})\right) \right];$

• These methods may have an improper bias and lack flexibility.

Weiwei Cheng, Krzysztof Dembczyński, and Eyke Hüllermeier Knowledge Engineering & Bioinformatics Lab Department of Mathematics and Computer Science University of Marburg, Germany

Instance-Based Approach

- Target function is estimated (on demand) in a local way;
- Core part is to estimate a locally constant model;
- Uses probabilistic models for rankings, considering nearby preferences as a representative sample.

Plackett-Luce Model

$$\mathcal{P}(\Pi = \pi; \mathbf{v}) = \prod_{i=1}^{M} \frac{1}{v_{\pi(i)} + v_{\pi(i)}}$$

- Positive v_1, \ldots, v_M , where v_i corresponds to *i*-th label's score, ability, skill, etc.;
- First determines the 1st rank, then the 2nd rank, and so on (i.e., a *multistage model*);
- Appealing for incomplete rankings. The probability of an incomplete ranking with k < M labels observed: $\mathcal{P}(\Pi = \pi; \mathbf{v}) = \prod_{i=1}^{k} v_{\pi(i)} / (v_{\pi(i)} + v_{\pi(i+1)} + \dots + v_{\pi(k)}).$
- The probability to observe rankings $\boldsymbol{\pi} = \{\pi_1 \dots \pi_K\}$ in the neighborhood: $\mathcal{P}(\boldsymbol{\pi}; \mathbf{v}) = \prod_{i=1}^{K} \prod_{m=1}^{M_i} v_{\pi_i(m)} / \left(\sum_{j=m}^{M_i} v_{\pi_i(j)} \right);$
- Corresponding MLE can be done efficiently, e.g., through MM (minorization and maximization) algorithm. See MM Algorithm for Generalized Bradley-Terry Models, Hunter, The Annals of Statistics, 2004.

ACKNOWLEDGEMENT: Weiwei Cheng was financially supported by the ICML 2010 Student Travel Scholarship Program. Poster presented at ICML 2010, 27th International Conference on Machine Learning, Haifa, Israel, June 2010

 $_{+1)} + \cdots + v_{\pi(M)}$

Generalized Linear Model

– Modeling the parameter v_i as a linear function of the attributes describing the instance: $v_i = \exp\left(\sum_{d=1}^D \alpha_d^{(i)} \cdot x_d\right), \ 1 \le i \le M, 1 \le d \le D;$ - Given the training data $\mathcal{T} = \{ (\mathbf{x}^{(n)}, \pi^{(n)}) \}_{n=1}^{N}$ with $\mathbf{x}^{(n)} = (x_1^{(n)} \dots x_D^{(n)})$, the log-likelihood function is

$$L = \sum_{n=1}^{N} \left[\sum_{i=1}^{M_n} \log \left(v(\pi^{(n)}(i)) \right) \right]$$

where M_n is the number of labels in the ranking $\pi^{(n)}$ and $v(i,n) = \exp\left(\sum_{d=1}^{D} \alpha_d^{(i)} \cdot x_d^{(n)}\right);$

– L is convex with respect to $\alpha_d^{(i)}$.

Experiments and Conclusions

	I				I				I			
	complete ranking				30% missing labels				60% missing labels			
	IB-PL	IB-Mal	Lin-PL	Lin-LL	IB-PL	IB-Mal	Lin-PL	Lin-LL	IB-PL	IB-Mal	Lin-PL	Lin-LL
authorship	.936(1)	.936(2)	.930(3)	.657(4)	.927(1)	.913(2)	.899(3)	.656(4)	.886(1)	.849(2)	.846(3)	.650(4)
bodyfat	.230(3)	.229(4)	.272(1)	.266(2)	.204(3)	.198(4)	.266(1)	.251(2)	.151(4)	.160(3)	.222(2)	.241(1)
calhousing	.326(2)	.344(1)	.220(4)	.223(3)	.303(2)	.310(1)	.229(3)	.223(4)	.259(2)	.263(1)	.229(3)	.221(4)
cpu-small	.495(2)	.496(1)	.426(3)	.419(4)	.477(1)	.473(2)	.418(4)	.419(3)	.437(1)	.428(2)	.412(4)	.418(3)
elevators	.721(2)	.727(1)	.712(3)	.701(4)	.702(2)	.683(4)	.706(1)	.699(3)	.633(3)	.596(4)	.704(1)	.696(2)
fried	.894(4)	.900(3)	.996(1)	.989(2)	.861(3)	.850(4)	.993(1)	.989(2)	.797(3)	.777(4)	.990(1)	.987(2)
glass	.841(2)	.842(1)	.825(3)	.818(4)	.809(3)	.776(4)	.825(1)	.817(2)	.675(3)	.611(4)	.807(2)	.808(1)
housing	.711(2)	.736(1)	.659(3)	.626(4)	.654(3)	.669(1)	.658(2)	.625(4)	.492(4)	.543(3)	.636(1)	.614(2)
iris	.960(1)	.925(2)	.832(3)	.818(4)	.926(1)	.867(2)	.823(3)	.804(4)	.868(1)	.799(2)	.778(3)	.768(4)
pendigits	.939(2)	.941(1)	.909(3)	.814(4)	.918(1)	.902(3)	.909(2)	.802(4)	.794(2)	.781(4)	.907(1)	.787(3)
segment	.950(1)	.802(4)	.902(2)	.810(3)	.874(2)	.735(4)	.895(1)	.806(3)	.674(3)	.612(4)	.888(1)	.801(2)
stock	.922(2)	.925(1)	.710(3)	.696(4)	.877(1)	.855(2)	.701(3)	.691(4)	.740(1)	.724(2)	.687(4)	.689(3)
vehicle	.859(1)	.855(2)	.838(3)	.770(4)	.838(1)	.822(2)	.817(3)	.769(4)	.765(2)	.736(4)	.804(1)	.764(3)
vowel	.851(2)	.882(1)	.586(4)	.601(3)	.785(2)	.810(1)	.581(4)	.598(3)	.588(3)	.638(1)	.575(4)	.591(2)
wine	.947(2)	.944(3)	.954(1)	.942(4)	.926(4)	.930(3)	.931(2)	.941(1)	.907(2)	.893(4)	.915(1)	.894(3)
wisconsin	.479(4)	.501(3)	.635(1)	.542(2)	.453(4)	.464(3)	.615(1)	.533(2)	.381(4)	.399(3)	.585(1)	.518(2)
Avg. Rank	2.06	1.94	2.56	3.44	2.13	2.63	2.19	3.06	2.44	2.94	2.06	2.56

- Instance-based methods are more flexible, while linear methods are more robust;
- Probabilistic modeling of the data generating process leads to a theoretically sound method and has further advantages compared to direct loss minimization.

 $(i), n) \Big) - \log \sum_{i=m}^{n} v(\pi^{(n)}(j), n) \Big| ,$