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Knowledge Engineering & Bioinformatics Lab

Department of Mathematics and Computer Science
University of Marburg, Germany

Label Ranking

label ranking  

customer 1 MINI _ Toyota _ BMW _ Volvo

customer 2 BMW _ MINI _ Toyota

customer 3 Volvo _ BMW _ Toyota _ MINI

customer 4 Toyota _ BMW

new customer ???

Given:

– a set of training instances {xi | i = 1 . . . N } ⊆ X

– a set of labels L = {λ1, λ2, . . . , λM }
– for each training instance xi: a set of pairwise preferences

of the form λi �xi λj

Find:

A ranking function (X→ Ω mapping) that maps each
x ∈ X to a ranking �x of L (permutation πx) and
generalizes well in terms of a loss function on rankings.

Existing Methods

Ranking by pairwise comparison
Fürnkranz et al.,  ECML-03

Constraint classification 
Har-Peled et al.,  NIPS-03

Log-linear models for label ranking (Lin-LL) 
Dekel et al.,  NIPS-03

Reduction to binary
classification

Learning utility functions

Learning pairwise
preferences

• e.g., Lin-LL minimizes a convex upper bound of the loss∑
1≤i≤j≤M

{
0 fπ(i)(x) < fπ(j)(x)

1 fπ(i)(x) ≥ fπ(j)(x)
,

namely log
[
1 +

∑
1≤i≤j≤M exp

(
fπ(j)(x)− fπ(i)(x)

)]
;

• These methods may have an improper bias and lack
flexibility.

Instance-Based Approach
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– Target function is estimated (on demand) in a local way;

– Core part is to estimate a locally constant model;

– Uses probabilistic models for rankings, considering
nearby preferences as a representative sample.

Plackett-Luce Model

P(Π = π;v) =

M∏
i=1

vπ(i)

vπ(i) + vπ(i+1) + · · · + vπ(M)

– Positive v1, . . . , vM , where vi corresponds to i-th label’s
score, ability, skill, etc.;

– First determines the 1st rank, then the 2nd rank, and so on
(i.e., a multistage model);

– Appealing for incomplete rankings. The probability of an
incomplete ranking with k < M labels observed:
P(Π = π;v) =

∏k
i=1 vπ(i) /

(
vπ(i) + vπ(i+1) + · · · + vπ(k)

)
.

• The probability to observe rankings π = {π1 . . . πK} in the
neighborhood: P(π;v) =

∏K
i=1

∏Mi

m=1 vπi(m)/
(∑Mi

j=m vπi(j)

)
;

• Corresponding MLE can be done efficiently, e.g., through
MM (minorization and maximization) algorithm. See
MM Algorithm for Generalized Bradley-Terry Models,
Hunter, The Annals of Statistics, 2004.

Generalized Linear Model

– Modeling the parameter vi as a linear function of the
attributes describing the instance:
vi = exp

(∑D
d=1α

(i)
d · xd

)
, 1 ≤ i ≤M, 1 ≤ d ≤ D;

– Given the training data T =
{(

x(n), π(n)
)}N

n=1
with

x(n) =
(
x

(n)
1 . . . x

(n)
D

)
, the log-likelihood function is

L =

N∑
n=1

 Mn∑
i=1

log
(
v(π(n)(i), n)

)
− log

Mn∑
j=m

v(π(n)(j), n)

 ,
where Mn is the number of labels in the ranking π(n) and
v(i, n) = exp

(∑D
d=1α

(i)
d · x

(n)
d

)
;

– L is convex with respect to α(i)
d .

Experiments and Conclusions

complete ranking 30% missing labels 60% missing labels
IB-PL IB-Mal Lin-PL Lin-LL IB-PL IB-Mal Lin-PL Lin-LL IB-PL IB-Mal Lin-PL Lin-LL

authorship .936(1) .936(2) .930(3) .657(4) .927(1) .913(2) .899(3) .656(4) .886(1) .849(2) .846(3) .650(4)
bodyfat .230(3) .229(4) .272(1) .266(2) .204(3) .198(4) .266(1) .251(2) .151(4) .160(3) .222(2) .241(1)
calhousing .326(2) .344(1) .220(4) .223(3) .303(2) .310(1) .229(3) .223(4) .259(2) .263(1) .229(3) .221(4)
cpu-small .495(2) .496(1) .426(3) .419(4) .477(1) .473(2) .418(4) .419(3) .437(1) .428(2) .412(4) .418(3)
elevators .721(2) .727(1) .712(3) .701(4) .702(2) .683(4) .706(1) .699(3) .633(3) .596(4) .704(1) .696(2)
fried .894(4) .900(3) .996(1) .989(2) .861(3) .850(4) .993(1) .989(2) .797(3) .777(4) .990(1) .987(2)
glass .841(2) .842(1) .825(3) .818(4) .809(3) .776(4) .825(1) .817(2) .675(3) .611(4) .807(2) .808(1)
housing .711(2) .736(1) .659(3) .626(4) .654(3) .669(1) .658(2) .625(4) .492(4) .543(3) .636(1) .614(2)
iris .960(1) .925(2) .832(3) .818(4) .926(1) .867(2) .823(3) .804(4) .868(1) .799(2) .778(3) .768(4)
pendigits .939(2) .941(1) .909(3) .814(4) .918(1) .902(3) .909(2) .802(4) .794(2) .781(4) .907(1) .787(3)
segment .950(1) .802(4) .902(2) .810(3) .874(2) .735(4) .895(1) .806(3) .674(3) .612(4) .888(1) .801(2)
stock .922(2) .925(1) .710(3) .696(4) .877(1) .855(2) .701(3) .691(4) .740(1) .724(2) .687(4) .689(3)
vehicle .859(1) .855(2) .838(3) .770(4) .838(1) .822(2) .817(3) .769(4) .765(2) .736(4) .804(1) .764(3)
vowel .851(2) .882(1) .586(4) .601(3) .785(2) .810(1) .581(4) .598(3) .588(3) .638(1) .575(4) .591(2)
wine .947(2) .944(3) .954(1) .942(4) .926(4) .930(3) .931(2) .941(1) .907(2) .893(4) .915(1) .894(3)
wisconsin .479(4) .501(3) .635(1) .542(2) .453(4) .464(3) .615(1) .533(2) .381(4) .399(3) .585(1) .518(2)
Avg. Rank 2.06 1.94 2.56 3.44 2.13 2.63 2.19 3.06 2.44 2.94 2.06 2.56

– Instance-based methods are more flexible, while linear
methods are more robust;

– Probabilistic modeling of the data generating process
leads to a theoretically sound method and has further
advantages compared to direct loss minimization.
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