Label Ranking Methods based on the Plackett-Luce Model

Weiwei Cheng, Krzysztof Dembczynski, Eyke Hüllermeier

Knowledge Engineering & Bioinformatics Lab Department of Mathematics and Computer Science University of Marburg, Germany

ICML 2010, Haifa, Jun.22.2010

Label Ranking – An Example

Learning customers' preferences on cars:

	label ranking
customer 1	$MINI \succ Toyota \succ BMW$
customer 2	BMW > MINI > Toyota
customer 3	BMW > Toyota > MINI
customer 4	Toyota > MINI > BMW
new customer	???

where the customers could be described by feature vectors, e.g., (gender, age, place of birth, has child, ...)

Label Ranking – An Example

Learning customers' preferences on cars:

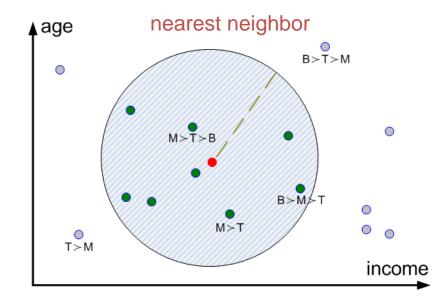
	MINI	Toyota	BMW
customer 1	1	2	3
customer 2	2	3	1
customer 3	3	2	1
customer 4	2 1		3
new customer	?	?	?

 $\pi(i)$ = position of the *i*-th label in the ranking 1: MINI 2: Toyota 3: BMW

Existing Approaches

Reduction to binary classification	Ranking by pairwise comparison Fürnkranz et al., ECML-03	Learning pairwise preferences					
	Constraint classification Har-Peled et al., NIPS-03	Learning utility functions					
	Log-linear models for label ranking (<i>Lin-LL</i>) Dekel et al., NIPS-03						
$\sum_{1 \le i \le j \le M} \begin{cases} 0 & f_{\pi(i)}(\mathbf{x}) < f_{\pi(j)}(\mathbf{x}) \\ 1 & f_{\pi(i)}(\mathbf{x}) \ge f_{\pi(j)}(\mathbf{x}) \end{cases}$ $\log \left[1 + \sum_{1 \le i \le j \le M} \exp\left(f_{\pi(j)}(\mathbf{x}) - f_{\pi(i)}(\mathbf{x})\right) \right]$							

Instance-Based Approaches



- Target function $\mathcal{X} \to \Omega$ is estimated (on demand) in a local way.
- Distribution of rankings is (approx.) constant in a local region.
- Core part is to estimate the locally constant model.

Mallows model (Mallows, Biometrika, 1957)

$$\mathcal{P}(\sigma|\theta,\pi) = \frac{\exp(-\theta d(\pi,\sigma))}{\phi(\theta,\pi)}$$

with

center ranking $\pi \in \Omega$ spread parameter $\theta > 0$ and $d(\cdot)$ is a metric on permutations

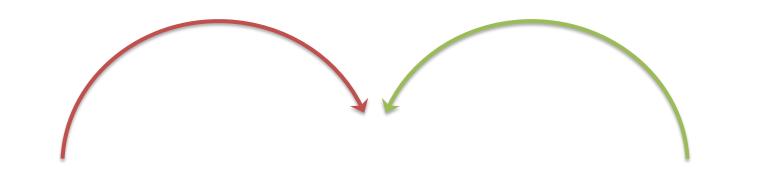
Computational issues arise when the training data contains incomplete rankings.

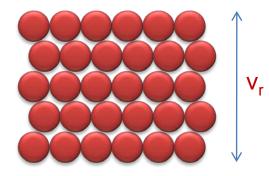
$$\mathcal{P}(\pi \,|\, \theta, \pi_0) = \sum_{\pi^* \in E(\pi)} \mathcal{P}(\pi^* \,|\, \theta, \pi_0)$$

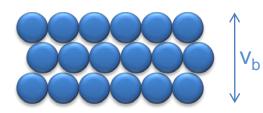
- First determine the 1st rank, then the 2nd rank, etc.
- Positive v₁,..., v_M, where v_i corresponds to *i*-th label's score, ability, skill, etc.
- Plackett-Luce

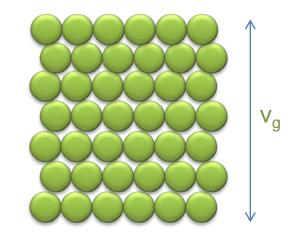
$$\mathcal{P}(\Pi = \pi; \mathbf{v}) = \prod_{i=1}^{M} \frac{v_{\pi(i)}}{v_{\pi(i)} + v_{\pi(i+1)} + \dots + v_{\pi(M)}}$$

PL: Vase Interpretation





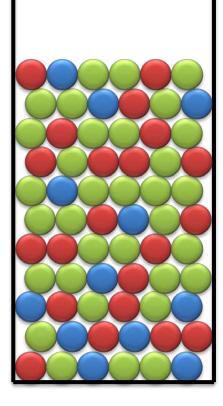




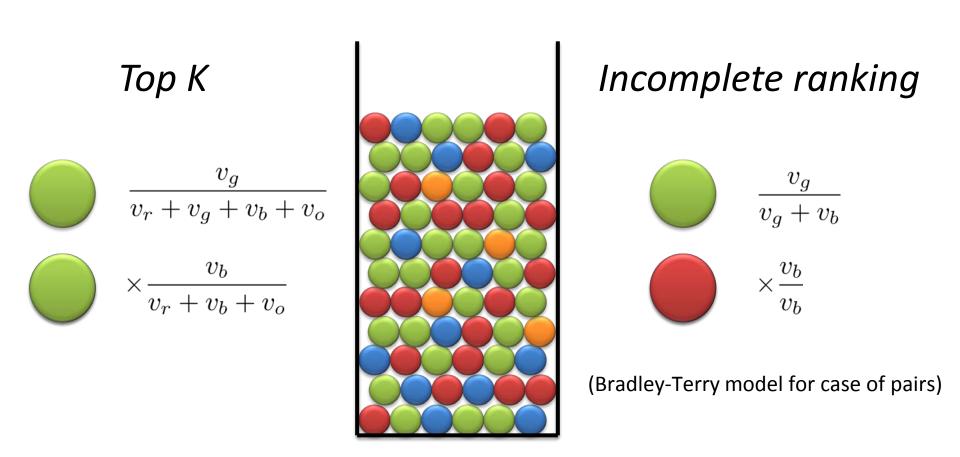
PL: Vase Interpretation

Probability:

 $\frac{v_r}{v_r + v_g + v_b} \\ \times \frac{v_g}{v_g + v_b} \\ \times \frac{v_b}{v_b}$



PL: Vase Interpretation



Multistage Model

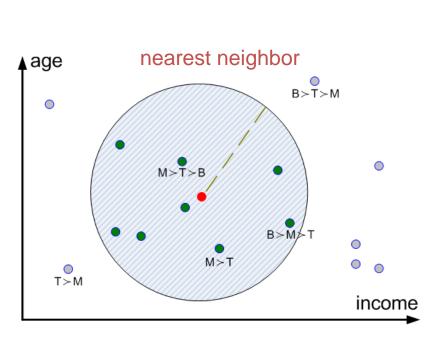
- Positive v₁,..., v_M, where v_i corresponds to *i*-th label's score, ability, skill, etc.
- First determine the 1st rank, then the 2nd rank, etc.
- Plackett-Luce

$$\mathcal{P}(\Pi = \pi; \mathbf{v}) = \prod_{i=1}^{M} \frac{v_{\pi(i)}}{v_{\pi(i)} + v_{\pi(i+1)} + \dots + v_{\pi(M)}}$$

For the incomplete ranking

$$\mathcal{P}(\Pi = \pi; \mathbf{v}) = \prod_{i=1}^{k} \frac{v_{\pi(i)}}{v_{\pi(i)} + v_{\pi(i+1)} + \dots + v_{\pi(k)}}$$

$$k < M \text{ is the number of labels observed}$$
9/15



The probability to observe the rankings $\pi = \{\pi_1, \ldots, \pi_K\}$ in the neighborhood:

$$\mathcal{P}(\boldsymbol{\pi}; \mathbf{v}) = \prod_{i=1}^{K} \prod_{m=1}^{M_i} \frac{v_{\pi_i(m)}}{\sum_{j=m}^{M_i} v_{\pi_i(j)}}$$

Corresponding MLE can be efficiently done through, e.g., MM (minorization and maximization) algorithm, see Hunter 2004.

Philippy-Universit

Can we take advantage of the global approaches? Low variance, highly stable w.r.t. runtime, performance, etc.

- Estimating a *global* model
- Modeling the parameter v_i as a linear function of the attributes describing the instance.

$$v_i = \exp\left(\sum_{d=1}^{D} \alpha_d^{(i)} \cdot x_d\right), \ (1 \le i \le M, 1 \le d \le D)$$

Generalized Linear Models

Given training data
$$\mathcal{T} = \left\{ \left(\mathbf{x}^{(n)}, \pi^{(n)} \right) \right\}_{n=1}^{N}$$
 with $\mathbf{x}^{(n)} = \left(x_1^{(n)}, \dots, x_D^{(n)} \right)$, the log-likelihood function is

$$L = \sum_{n=1}^{N} \left[\sum_{i=1}^{M_n} \log \left(v(\pi^{(n)}(i), n) \right) - \log \sum_{j=m}^{M_n} v(\pi^{(n)}(j), n) \right],$$

where M_n is the number of labels in the ranking $\pi^{(n)}$ and

$$v(i,n) = \exp\left(\sum_{d=1}^{D} \alpha_d^{(i)} \cdot x_d^{(n)}\right).$$

This log-likelihood function is convex!

Experimental Results

		complete	e ranking	5	3	30% missing labels		60% missing labels				
	IB-PL	IB-Mal	Lin-PL	Lin-LL	IB-PL	IB-Mal	Lin-PL	Lin-LL	IB-PL	IB-Mal	Lin-PL	Lin-LL
authorship	.936(1)	.936(2)	.930(3)	.657(4)	.927(1)	.913(2)	.899(3)	.656(4)	.886(1)	.849(2)	.846(3)	.650(4)
bodyfat	.230(3)	.229(4)	.272(1)	.266(2)	.204(3)	.198(4)	.266(1)	.251(2)	.151(4)	.160(3)	.222(2)	.241(1)
calhousing	.326(2)	.344(1)	.220(4)	.223(3)	.303(2)	.310(1)	.229(3)	.223(4)	.259(2)	.263(1)	.229(3)	.221(4)
cpu-small	.495(2)	.496(1)	.426(3)	.419(4)	.477(1)	.473(2)	.418(4)	.419(3)	.437(1)	.428(2)	.412(4)	.418(3)
elevators	.721(2)	.727(1)	.712(3)	.701(4)	.702(2)	.683(4)	.706(1)	.699(3)	.633(3)	.596(4)	.704(1)	.696(2)
fried	.894(4)	.900(3)	.996(1)	.989(2)	.861(3)	.850(4)	.993(1)	.989(2)	.797(3)	.777(4)	.990(1)	.987(2)
glass	.841(2)	.842(1)	.825(3)	.818(4)	.809(3)	.776(4)	.825(1)	.817(2)	.675(3)	.611(4)	.807(2)	.808(1)
housing	.711(2)	.736(1)	.659(3)	.626(4)	.654(3)	.669(1)	.658(2)	.625(4)	.492(4)	.543(3)	.636(1)	.614(2)
iris	.960(1)	.925(2)	.832(3)	.818(4)	.926(1)	.867(2)	.823(3)	.804(4)	.868(1)	.799(2)	.778(3)	.768(4)
pendigits	.939(2)	.941(1)	.909(3)	.814(4)	.918(1)	.902(3)	.909(2)	.802(4)	.794(2)	.781(4)	.907(1)	.787(3)
segment	.950(1)	.802(4)	.902(2)	.810(3)	.874(2)	.735(4)	.895(1)	.806(3)	.674(3)	.612(4)	.888(1)	.801(2)
stock	.922(2)	.925(1)	.710(3)	.696(4)	.877(1)	.855(2)	.701(3)	.691(4)	.740(1)	.724(2)	.687(4)	.689(3)
vehicle	.859(1)	.855(2)	.838(3)	.770(4)	.838(1)	.822(2)	.817(3)	.769(4)	.765(2)	.736(4)	.804(1)	.764(3)
vowel	.851(2)	.882(1)	.586(4)	.601(3)	.785(2)	.810(1)	.581(4)	.598(3)	.588(3)	.638(1)	.575(4)	.591(2)
wine	.947(2)	.944(3)	.954(1)	.942(4)	.926(4)	.930(3)	.931(2)	.941(1)	.907(2)	.893(4)	.915(1)	.894(3)
wisconsin	.479(4)	.501(3)	.635(1)	.542(2)	.453(4)	.464(3)	.615(1)	.533(2)	.381(4)	.399(3)	.585(1)	.518(2)
Avg. Rank	2.06	1.94	2.56	3.44	2.13	2.63	2.19	3.06	2.44	2.94	2.06	2.56

IB-PL: instance-based with PL Lin-PL: linear model with PL **IB-Mal:** instance-based with Mallows

Lin-LL: log linear approach

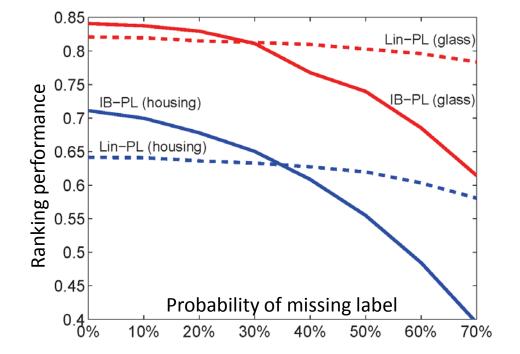
Performance measured in *Kendall's tau* (#concordant pairs - #discordant pairs) / #all pairs

	IB-PL	IB-Mal	Lin-PL	Lin-LL
IB-PL	—	6/11/11	12/8/7	13/11/9
IB-Mal	10/5/5	—	11/8/7	12/9/7
Lin-PL	4/8/9	5/8/9	—	14/13/11
Lin-LL	3/5/7	4/7/9	2/4/5	

win/win/win statistics for complete rankings, 30% and 60% missing labels

IB-PL: instance-based with PL Lin-PL: linear model with PL Performance measured in *Kendall's tau* (#concordant pairs - #discordant pairs) / #all pairs

Typical "learning curves"



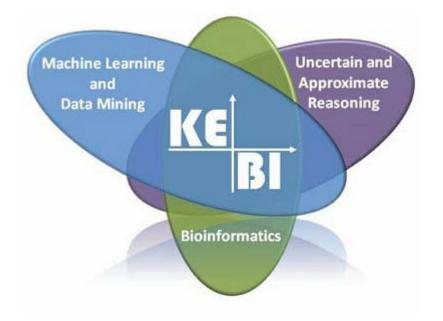
Main observation:

Local methods are more *flexible* and can exploit more preference information; global approaches are more *robust*.

Summary

- Label ranking with *Plackett-Luce* Model
 - Instance-based approach
 - Generalized linear approach
- Particularly appealing for training with incomplete ranking
- Probabilistic modeling of the data generating process
- Some advantages compared to direct loss minimization

 Combining local and global methods, estimating a linear model in a local way



Knowledge Engineering & Bioinformatics (KEBI) Mathematics and Computer Science University of Marburg

http://www.uni-marburg.de/fb12/kebi