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Motivation

– Insufficient theoretical analysis in multi-label classification (MLC) papers

– The notion of “label dependence” is often used in a purely intuitive manner, without a precise
formal definition

– The results are given on average without investigation under which conditions a given algorithm
benefits

– The reasons for improvements are not carefully distinguished

– It is implicitly assumed that one algorithm is going to be beneficial for multiple error measures

Main Question

The risk-minimizing model h∗ is formally defined as:

h∗(x) = arg min
h

EY|xL(Y, h) = arg min
h

∑
y

P(y |x)L(y, h),

where L(Y, y) is a loss function defined on multi-label predictions.

Do we have to take into account the conditional dependence between labels in
order to obtain a risk-minimizing model?

Loss Functions and Risk Minimizers

loss function risk minimizer

Hamming loss: LH(y,h(x)) =

m∑
i=1

Jyi 6= hi(x)K h∗i (x) = arg max
b∈{0,1}

P(yi = b |x)

Rank loss: Lr(y, f(x)) =
∑

(i,j):yi>yj

(
Jfi < fjK +

1

2
Jfi = fjK

)
f ∗i (x) = P(yi = 1 |x)

Subset 0/1 loss: Ls(y,h(x)) = Jy 6= h(x)K h∗(x) = arg max
y∈Y

P(y |x)

Consequences and Conjectures

– The risk-minimizing prediction for the Hamming and the rank loss can be obtained from the
marginal distributions P(Yi |x), i = 1, . . . ,m, alone

– It is not necessary to know the joint label distribution P(Y |x) on Y and take the conditional
dependence into account

– As opposed to this, the modeling of conditional dependence has to be taken into account in
order to minimize the subset zero-one loss

– In general, a specific learning and prediction strategy has to be tailored for a given
performance measure.

Estimation of the Joint Distribution

– The conditional dependence can be fully described by the joint distribution

– The joint distribution enables to compute Bayes optimal predictions of any loss function

Probabilistic Classifier Chains (PCC)

Given a query instance x, the (conditional) probability of each label combination y = (y1, . . . , ym) ∈ Y
can be computed using the product rule of probability:

P(y |x) = P(y1 |x) ·
m∏

i=2

P(yi |x, y1, . . . , yi−1).

Algorithm:
– Learn m functions gi(·) on an augmented input space X × {0, 1}i−1, taking y1, . . . , yi−1 as additional

attributes:

gi : X × {0, 1}i−1 → [0, 1]

(x, y1, . . . , yi−1) 7→ P(yi = 1 |x, y1, . . . , yi−1)

– Assuming that the function gi(·) can be interpreted as a probabilistic classifier whose prediction is
the probability that yi = 1, then:

P̂(y |x) = g1(x) ·
m∏

i=2

gi(x, y1, . . . , yi−1)

– Given P(y |x) and a loss function L(·) to be minimized, an optimal prediction can then be derived
in an explicit way:

h∗(x) = arg min
h

EY|xL(Y, h)

PCC vs. CC

– Original Classifier Chains (CC) (Read et al., 2009) follow a similar learning scheme

– The final prediction is computed by taking the predictions of consecutive models gi, i = 1, . . . ,m

– CC can be seen as a deterministic approximation of P(y |x), in the sense of using {0, 1}-valued
probabilities

– CC estimates the joint mode in a greedy way

x

P(y1=0|x)=0.4

P(y2=0|y1=0,x)=0 P(y2=1|y1=0,x)=1

P(y1=1|x)=0.6

P(y2=0|y1=1,x)=0.4 P(y2=1|y1=1,x)=0.6

y1=1y1=0

y2=0 y2=1 y2=0 y2=1

P(0,0|x) = 0 P(0,1|x) = 0.4 P(1,0|x) = 0.24 P(1,1|x) = 0.36

Considering the chaining classifiers as searching a path in a binary tree whose leaf nodes are associated with a
labeling y ∈ Y , and with 0/1 branches for yi on level i, CC follows a single path in this tree in a greedy manner.

Simulations

– Two artificial data sets: conditionally independent and conditionally dependent data

– 10 000 training examples, 3 labels, low-dimensional problems

– Three classifiers: Binary Relevance (BR), Classifier Chains (CC), Probabilistic Classifier Chains
(PCC) (all used with logistic regression as base classifier), and Bayes optimal predictions (B-O)

Results on two artificial data sets: conditionally independent (left) and conditionally dependent (right).

classifier Hamming rank subset 0/1
loss loss loss

BR 0.4178(1.5) 0.5527(1) 0.8108(2)
CC 0.4189(3) 0.5934(3) 0.8124(3)
PCC 0.4178(1.5) 0.5528(2) 0.8088(1)

B-O 0.4179 0.5532 0.8088

classifier Hamming rank subset 0/1
loss loss loss

BR 0.3921(2) 0.5675(1) 0.7374(3)
CC 0.4308(3) 0.6930(3) 0.6100(2)
PCC 0.3920(1) 0.5676(2) 0.6052(1)

B-O 0.3920 0.5671 0.6057

Experimental Results on Benchmark Data

– Twelve benchmark data sets taken from http://mlkd.csd.auth.gr/multilabel.html and
http://www.cs.waikato.ac.nz/˜jmr30/#datasets

– Five classifiers: Binary Relevance (BR), Classifier Chains (CC), Probabilistic Classifier Chains (PCC),
Ensembled Classifier Chains (ECC), Ensembled Probabilistic Classifier Chains (EPCC) (all used
with logistic regression as base classifier)
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