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Motivation

— Insufficient theoretical analysis in multi-label classification (MLC) papers

— The notion of “label dependence” is often used in a purely intuitive manner, without a precise
formal definition

— The results are given on average without investigation under which conditions a given algorithm
benefits

— The reasons for improvements are not carefully distinguished

— It is implicitly assumed that one algorithm is going to be beneficial for multiple error measures

Main Question

Estimation of the Joint Distribution

— The conditional dependence can be fully described by the joint distribution

— The joint distribution enables to compute Bayes optimal predictions of any loss function

Probabilistic Classifier Chains (PCC)

Simulations

The risk-minimizing model h* is formally defined as:

h*(x) = arg m’inEYmL(Y, h) = arg m’inzy:P(y |x)L(y, h),

where L(Y,y) is a loss function defined on multi-label predictions.

Do we have to take into account the conditional dependence between labels in
order to obtain a risk-minimizing model?

Loss Functions and Risk Minimizers

loss function risk minimizer

hi(x) = arg max P(y; =b|x)

Hamming loss: Ly(y,h(x)) = Z[[yz # hi(z)] be{0,1}
i=1 |

Rank loss: L.(y,f(x)) = Z (ﬂfZ < fil + %[[fZ - fj]]) ffx) = Ply;=1|x)

(4,):yi>y;

Subset 0/11loss: Ls(y,h(x)) = |y # h(x)] h*(x) = argmax P(y | x)

ye)

Consequences and Conjectures

Given a query instance x, the (conditional) probability of each label combination y = (y1,...,yn) € V
can be computed using the product rule of probability:

m

Ply|x) =Py |z)- HP(%‘ [z, 1, - Yie1)-
i—2
Algorithm:
— Learn m functions g;(-) on an augmented input space X’ x {0,1}'"!, taking 1, . . ., y;_1 as additional
attributes:

g+ X x {0,131 — [0,1]
(,y1, ... yi-1) = Plyi=1]z,01,...,9i-1)

— Assuming that the function g;(-) can be interpreted as a probabilistic classifier whose prediction is
the probability that y; = 1, then:

m

P(U |z) = gi(x) - ng'(«’ﬂa Yty Yio1)

=

— Given P(y | ¢) and a loss function L(-) to be minimized, an optimal prediction can then be derived
in an explicit way:
h*(x) = arg m}in EvizL(Y, h)

PCC vs. CC

—Two artificial data sets: conditionally independent and conditionally dependent data
— 10 000 training examples, 3 labels, low-dimensional problems

— Three classifiers: Binary Relevance (BR), Classifier Chains (CC), Probabilistic Classifier Chains
(PCC) (all used with logistic regression as base classifier), and Bayes optimal predictions (B-O)

Results on two artificial data sets: conditionally independent (left) and conditionally dependent (right).

classifier Hamming rank  subset(0/1 classifier Hamming rank  subset0/1
loss loss loss loss loss loss
BR 0.4178(1.5) 0.5527(1) 0.8108(2) BR 0.3921(2) 0.5675(1) 0.7374(3)
CC 0.4189(3) 0.5934(3) 0.8124(3) CC 0.4308(3) 0.6930(3) 0.6100(2)
PCC 0.4178(1.5) 0.5528(2) 0.8088(1) PCC 0.3920(1) 0.5676(2) 0.6052(1)
B-O 0.4179 0.5532 0.8088 B-O 0.3920 0.5671 0.6057

Experimental Results on Benchmark Data

— The risk-minimizing prediction for the Hamming and the rank loss can be obtained from the
marginal distributions P(Y; | x), i =1,...,m, alone

— It is not necessary to know the joint label distribution P(Y | ) on ) and take the conditional
dependence into account

— As opposed to this, the modeling of conditional dependence has to be taken into account in
order to minimize the subset zero-one loss

— In general, a specific learning and prediction strategy has to be tailored for a given
performance measure.

— Original Classifier Chains (CC) (Read et al., 2009) follow a similar learning scheme
— The final prediction is computed by taking the predictions of consecutive models g;, i = 1,...,m

— CC can be seen as a deterministic approximation of P(y | ), in the sense of using {0, 1}-valued
probabilities

— CC estimates the joint mode in a greedy way
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Considering the chaining classifiers as searching a path in a binary tree whose leaf nodes are associated with a
labeling y € Y, and with 0/1 branches for y; on level 7, CC follows a single path in this tree in a greedy manner.

— Twelve benchmark data sets taken from http://mlkd.csd.auth.gr/multilabel.html and
http://www.cs.waikato.ac.nz/~jmr30/#datasets

— Five classifiers: Binary Relevance (BR), Classifier Chains (CC), Probabilistic Classifier Chains (PCC),
Ensembled Classifier Chains (ECC), Ensembled Probabilistic Classifier Chains (EPCC) (all used
with logistic regression as base classifier)
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