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X1 X2 X3 X4 Y1 Y2 Y3 Y4

0.34 0 10 174 0 0 1 0

1.45 0 32 277 0 1 0 0

1.22 1 46 421 0 0 0 1

0.74 1 25 165 0 1 0 0

0.95 1 72 273 1 0 0 0

1.04 0 33 158 0 0 1 0

0.92 1 81 382 ? ? ? ?

The distinguishing feature of multi-label classification (MLC): Instances may
have multiple labels instead of only a single one!

In conventional
classification, 
class labels are
mutually
exclusive.
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The distinguishing feature of multi-label classification (MLC): Instances may
have multiple labels instead of only a single one!

Exploiting label dependencies (correlations) has become a major concern
in MLC research. 
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Note that conventional multi-class classification is a special case of 
MLC, not the other way around … 

single-label
classification

multi-label
classification

… and specific structure is normally exploited for restricted classes
(e.g., linear programming).
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The idea of having „additional information“ comes from the „binary view“ 
(which is closely related to multi-task and transfer learning): 
Multiple binary instead of a generalized multi-class problem.

Indeed, MLC problems can be „binarized“ in an obvious way, and it would
be solved if binary relevance (BR) learning was enough … 
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The typical MLC paper:

 A new method is proposed that exploits label dependencies in one way or 
the other. 

 It is shown to have better average accuracy than existing approaches in 
terms of a bunch of MLC loss functions. 

Criticisms:

 Results are reported on average and not carefully analyzed: No 
investigation of the reasons for improvement and the conditions under 
which label dependencies are beneficial (some comments will follow).

 Implicitly, it seems to be assumed that one algorithm can be beneficial (if 
not optimal) for multiple loss functions (second part).

 The notion of “label correlation” is often used in a purely intuitive manner, 
without a precise formal definition (third part).
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first label (part. in ICML) second label (part. in COLT)
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® = 0 ® = ¼
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first label (part. in ICML) second label (part. in COLT)

Adding noise by inverting each label with small probability (0.1).  
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The Label Powerset (LP) Approach
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Treat every potential labeling as a new (meta-)class

 reduction to multi-class classification



Running Example

13

Potential advantage of taking label dependence into account comes at the cost
of more classes, imbalanced distributions, more complex decision boundaries.



Hamming and Subset 0/1 Loss
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SVM (SMO)

C4.5

k-NN

Reasons for deterioration are more of a practical nature; theoretical
explanations (for non-improvement) will follow later on.
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1. MLC Loss Functions and Risk Minimization

2. Label Dependence

3. Connections to Related Fields (maybe)

4. Concluding Remarks
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Some Notation
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Example of a Conditional Probability
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0 0 0 0

0 0 1 0

0 1 0 0.4

1 0 0 0.3

0 1 1 0

1 0 1 0.3

1 1 0 0

1 1 1 0



Risk Minimization
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MLC Loss Functions
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The spectrum of losses in MLC is wider than in conventional classification!



MLC Loss Functions
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„joint mode“ versus „combined mode“ (combination of
the modes of the margins)



Hamming Loss vs. Subset 0/1 Loss
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0 0 0 0

0 0 1 0

0 1 0 0.4

1 0 0 0.3

0 1 1 0

1 0 1 0.3

1 1 0 0

1 1 1 0

0 0 0 0

0 0 1 0

0 1 0 0.4

1 0 0 0.3

0 1 1 0

1 0 1 0.3

1 1 0 0

1 1 1 0

subset 0/1 risk minimizer: 
(0, 1, 0)

Hamming risk minimizer: 
(1, 0, 0)

would be the optimal choice of LP would be the optimal choice of BR
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What is the „Hamming-regret“ of a subset 0/1 optimal classifier and vice versa?  

seek to optimize
Hamming

use classifier tailored
for subset 0/1

seek to optimize
subset 0/1

use classifier tailored
for Hamming



Regret Analysis
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K. Dembczynski et al. Regret Analysis for Performance Metrics in Multi-Label Classication: The Case of
Hamming and Subset Zero-One Loss. ECML-2010. 
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K. Dembczynski et al. Regret Analysis for Performance Metrics in Multi-Label Classication: The Case of
Hamming and Subset Zero-One Loss. ECML-2010. 

A classifier tailored for subset 0/1 loss may perform extremely poor in 
terms of Hamming loss (at least theoretically)!



Regret Analysis: Empirical Evidence

26

Empirically, we could confirm that BR is often better (!) than LP in terms of 
Hamming loss but worse in terms of subset 0/1 loss.
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Similar observations have been made for classification vs. ranking
(e.g., learning AUC-optimizing classifiers): 

A good classifier is not necessarily a good ranker!

2 classification but
10 ranking errors

predicted relevant predicted non-relevant
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Hamming

subset 0/1 rank loss

Single labels: getting
individual labels right, 

decomposable loss

All labels: global loss, 
evaluating a prediction

as a whole

Pairs of labels: correct
sorting and comparison

of labels



What Do We Learn From These Observation?

 Even though the true differences will normally be smaller than suggested

by these worst case estimates, or may even shrink to zero under specific

assumptions (e.g., probability of mode > ½, conditional independence), 

different MLC loss functions will generally call for different classifiers. 

 Stated differently, a single classifier is unlikely to be optimal for various

loss functions at the same time.

 Thus, empirical studies suggesting the opposite should arouse suspicion … 
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RAKEL: Problem Reduction
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X1 X2 X3 X1 Y1 Y2 Y3 Y4

0.34 0 10 174 0 1 1 0

1.45 0 32 277 0 1 0 1

1.22 1 46 421 0 0 0 1

0.74 1 25 165 0 1 1 1

0.95 1 72 273 1 0 1 0

1.04 0 33 158 1 1 1 0

0.92 1 81 382 0 1 1 1

Train a label powerset classifier for each k-subset of labels, or a random
subset thereof. 

G. Tsoumakas and I. Vlahavas. Random k-labelsets: An ensemble method for multilabel classication. 
ECML 2007.
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RAKEL: Prediction
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Y1 Y2 Y3 Y4

0 1

1 1

1 0

0 1

0 1

0 1

1 0 1 1 majority vote
(or thresholding)   

(Y1, Y2) classifier 

(Y1, Y3) classifier 

(Y1, Y4) classifier 

(Y2, Y3) classifier 

(Y2, Y4) classifier 

(Y3, Y4) classifier 



What is RAKEL Estimating?
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0     0 0 0 3/64
0     0 0 1     6/64
0     0 1     0     2/64
0     1     0     0 3/64
1     0     0 0 6/64
0     0 1     1 8/64
0     1     0     1     8/64
1     0     0 1     0
0     1     1 0     9/64
1     0     1     0     2/64
1     1 0     0 5/64
0     1     1 1 1/64
1     0     1     1 8/64
1     1 0     1     3/64
1     1 1 0     0
1     1 1 1 0

0     0 19/64
0     1     21/64
1     0     16/64
1     1 8/64

Hamming loss minimizer:
subset 0/1 loss minimizer:

(0, 0, 0, 1)
(0, 1, 1, 0)

Bayes prediction
for Rakel

Rakel prediction:  (0, 0, 1, 1)



What is RAKEL Estimating?

 For k=1, RAKEL equals Binary Relevance (hence tailored for Hamming).
 For k=m, RAKEL equals Label Powerset (hence tailored for subset 0/1). 
 One may conjecture that, by varying k, RAKEL smoothly „interpolates“ 

between Hamming and subset 0/1.

 Experiment for m=4, with probability distributions are selected uniformly
at random.
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Hamming loss
minimizer

subset 0/1 loss
minimizer

Hamming loss

RAKEL (k=2) RAKEL (k=3)
0.441 0.469

subset 0/1 loss
minimizer

Hamming loss
minimizer

Subset 0/1 loss

RAKEL (k=2)RAKEL (k=3)
0.880 0.909
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Risk Minimization
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Exploiting label dependence is probably more important for subset 0/1 
than for Hamming!



What Do We Mean by Label Dependence?
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Standard stochastic independence: The joint distribution is the product
of the marginals.

 conditional label independence



What Do We Mean by Label Dependence?
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Standard stochastic independence: The joint distribution is the product
of the marginals.

 conditional label dependence



How to Exploit Label Dependence?

 The conditional distribution is our target, as it allows for (Bayes) optimal 
prediction (regardless of the loss function).

 In other words, we can „exploit“ this distribution, respectively the label
dependencies it implies, for optimal decision making. 

 However, by „exploiting label correlation“ one normally means using them
for learning, not for decision making.

 But how to exploit conditional label dependence from this point of view, 
given that it refers to a single instance?

38



Unconditional Label Dependence
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X1 X2 X3 X1 Y1 Y2 Y3 Y4

0.34 0 10 174 0 1 1 0

1.45 0 32 277 0 1 0 1

1.22 1 46 421 0 0 0 1

0.74 1 25 165 0 1 1 1

0.95 1 72 273 1 0 1 0

1.04 0 33 158 1 1 1 0

0.92 1 81 382 0 1 1 1

Taking a global view on label correlation:



Connections between the Dependencies
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unconditional dependence =  „average“ conditional dependence

conditional unconditional

 exploiting unconditional dependence, typically via regularization, 
for predicting conditional distributions (or functions thereof)



Stacking
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base classifier (BR)

stacking classifier

X1 X2 Y1 Y2 Y3 Y4

0.34 -0.45 0 0 1 0

0.45 0.56 1 1 1 1

-0.22 0.82 0 0 0 1

0.74 -0.12 0 1 0 0

predicted true



Stacking in the Running Example
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Average loss as a function of the angle, 
with and without stacking

− base classifier = 1-NN
− stacking by table classifier
− number of training examples = 50

or
or

Improvement on average!



In-Between Conditional and Unconditional Dependence
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Extended stacking classifier: |

the whole
instance space

single instance

part of the
instance space



In-Between Conditional and Unconditional Dependence
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Extended stacking classifier: |
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Related Methods and Research Fields

 Stacking, Bayesian inference and related regularization methods.

 Multi-task learning and transfer learning (also based on regularization)

 Reduced rank regression for multivariate regression with unconditionally
dependent outputs.

 Label dimensionality reduction, e.g., kernel dependency estimation. 

 Structured output prediction

 Conditional random fields and graphical models

 Preference Learning

46



Preference Learning
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Preferences

absolute relative

binary gradual total order partial order

Âa Â Âb c d a
b

c
d

a b c d

1 1 0 0

a b c d

.9 .8 .1 .3



Preference Learning
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Training Prediction

binary binary multi-label classification

binary total order multi-label classification (ranking)

graded graded graded muti-label classification (ICML 2010)

partial order total order label ranking

partial order partial order ranking with abstention (ECML 2010)



Calibrated Label Ranking
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F. Fürnkranz et al. Multilabel classification via calibrated label ranking. Machine Learning 73(2), 2008.

Combining absolute and relative evaluation:

Âa Âb c d Â Â Âe f g

relevant
positive

liked

irrelevant
negative
disliked



Summary and Conclusions

 Comparing MLC methods is difficult, since the effect of „taking label

correlations into account“ is hard to isolate from other changes that

become necessary.

 MLC loss functions are of a quite different nature, and it‘s arguably

impossible to minimize all of them by the same algorithm …

 Label dependence can be considered at different levels (conditional, 

unconditional, in-between), and the concrete mechanisms of „taking label

correlations into account“ call for an explanation.

 MLC is related to many other subfields of ML (and statistics), and existing

work in these fields should not be ignored. 
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