Top-k Selection based on Adaptive Sampling of Noisy Preferences

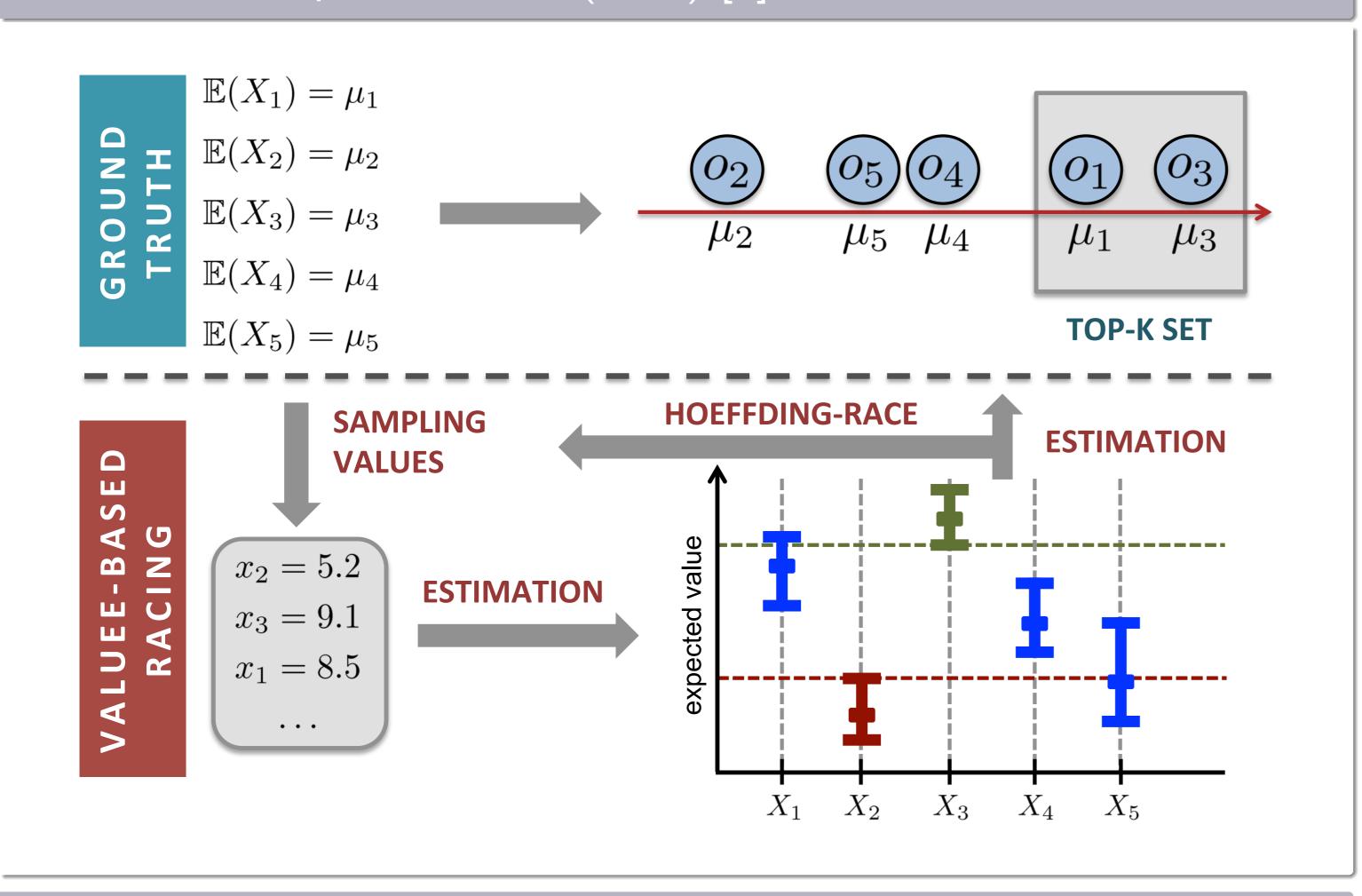
Sampling

strategies

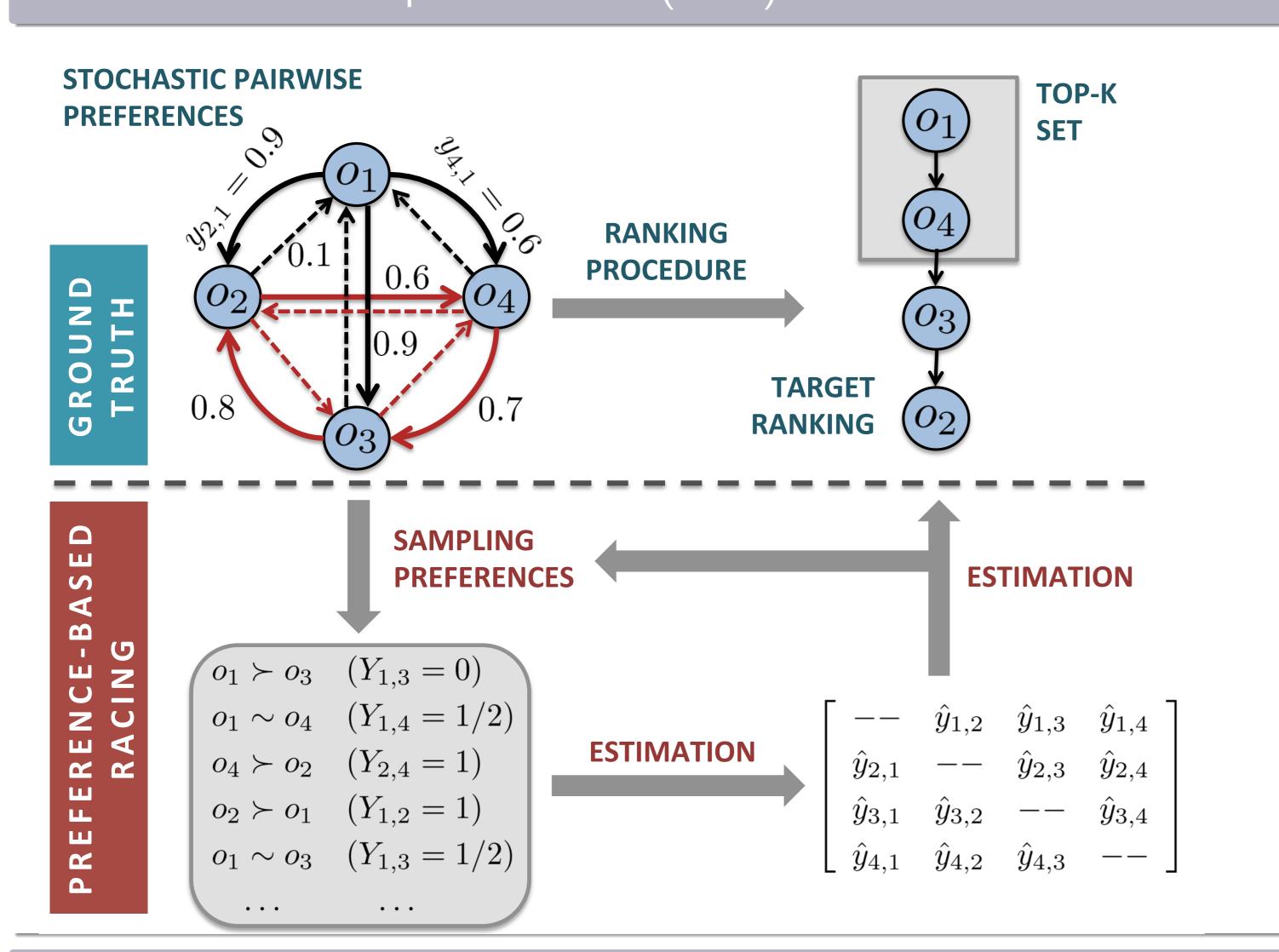
Róbert Busa-Fekete 1,2 Balázs Szörényi 2,3 Paul Weng 4 Weiwei Cheng 1 Eyke Hüllermeier¹

- ¹Computational Intelligence Group, Philipps University Marburg, Marburg, Germany
- ²Research Group on Artificial Intelligence, Hungarian Academy of Sciences and University of Szeged, Szeged, Hungary
- ³INRIA Lille Nord Europe, SequeL project, Villeneuve d'Ascq, France
- ⁴Laboratory of Computer Science of Paris 6, University Pierre and Marie Curie, Paris, France

Value-based Top-k Selection (TKS) [1]



Preference-based Top-k Selection (TKS)



Resolving Preferential Cycles

$$y_{i,j} = \mathbb{E}\left[Y_{i,j}
ight]$$
, $ext{Y} = \left[y_{i,j}
ight]_{K imes K}$

- 1. Copeland's ranking: (CO): $o_i \prec^{CO} o_j$ if and only if $d_i < d_j$, where $d_i = \#\{k \in [K] \mid 1/2 < y_{i,k}\},$
 - ightharpoonup An option o_i is preferred to o_j whenever o_i "beats" more options than o_j does.
- 2. Sum of expectations (SE) ranking: CO: $o_i \prec^{\text{SE}} o_i$ if and only if

$$y_i = rac{1}{K-1} \sum_{k
eq i} y_{i,k} < rac{1}{K-1} \sum_{k
eq j} y_{j,k} = y_j$$
 .

3. The idea of the Random walk (RW) ranking is to handle the matrix Y as a transition matrix S of a Markov chain and order the options based on its stationary distribution.

Theorem (Expected sample complexity for Copeland's ranking)

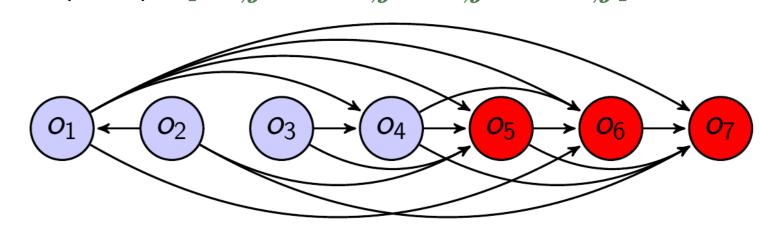
Let $\mathcal{O} = \{o_1, \ldots, o_K\}$ be a set of options such that $\Delta_{i,j} = y_{i,j} - 1/2 \neq 0$ for all $i,j \in [K]$. The expected number of pairwise comparison taken by PBR-CO is bounded by

$$\sum_{i=1}^K \sum_{j
eq i} \left\lceil rac{1}{2\Delta_{i,j}^2} \log rac{2K^2 n_{ ext{max}}}{\delta}
ight
ceil.$$

Moreover, the probability that no optimal solution is found by PBR-CO is at most δ if $n_{i,j} \leq n_{\max}$ for all $i,j \in [K]$.

Sampling Strategies

- ullet Algorithm PBR $(Y_{1,1},\ldots,Y_{K,K},\kappa,n_{\max},\delta)$
 - 1. Initially, sample each $Y_{i,j}$
- 2. In each iteration, calculate $ar y_{i,j}=rac{1}{n_{i,j}}\sum_{\ell=1}^{n_{i,j}}y_{i,j}^\ell$ and its confidence interval $[ar{y}_{i,j}-c_{i,j},ar{y}_{i,j}+c_{i,j}]$ with $c_{i,j}=\sqrt{rac{1}{2n_{i,j}}\lograc{2K^2n_{ ext{max}}}{\delta}}$
- 3. and decide which $Y_{i,j}$ will be sampled next based on the specific ranking procedure of interest
- ightharpoonup Copeland's ranking: $1/2 \notin [\bar{y}_{i,j} c_{i,j}, \bar{y}_{i,j} + c_{i,j}]$



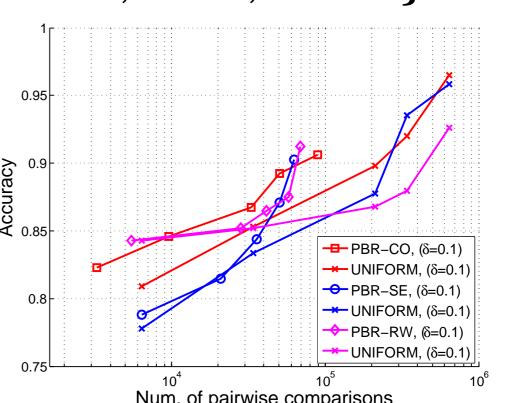
- $ightharpoonup \mathsf{Sum}$ of expectations (SE): $y_i \in [\bar{y}_i c_i, \bar{y}_i + c_i]$ where $ar{y}_i = rac{1}{K-1} \sum_{k
 eq i} ar{y}_{i,k}$ and $c_i = rac{1}{K-1} \sum_{j
 eq i} c_{i,j}$
- ightharpoonup Random walk (RW) ranking: transform Y into stochastic matrix S
 - $ullet s_{i,j} \in [ar s_{i,j} \mathfrak c_{i,j}, ar s_{i,j} + \mathfrak c_{i,j}]$, where $\mathfrak c_{i,j} = rac{K}{3} \max_k c_{i,k} \sum_\ell ar y_{\ell,i}$ (see Lemma 1-2 in [2])
 - Let Sv = 1v and $\bar{S}\bar{v} = 1\bar{v}$. Then, according to [3], we have

$$\|\mathbf{v} - \bar{\mathbf{v}}\|_{\max} \leq \text{const.} \times \max_{1 \leq i \leq K} \sum_{j} |s_{i,j} - \bar{s}_{i,j}| \leq \text{const.} \times \max_{1 \leq i \leq K} \sum_{j} \mathfrak{c}_{i,j}$$

Experiments: Bundesliga

- soccer matches of the last ten seasons from the German Bundesliga
- uniform sampling as baseline
- $\delta = 0.1, \kappa = 3, n_{\text{max}} = \{100, 500, 1000, 5000, 10000\}$

Team	W	L	T	\prec^{co}	$\prec^{ ext{SE}}$	\prec^{RW}
B. München	77	33	30	*1	*1	*1
B. Dortmund	56	49	35		*2	5
			36		4	*2
	55	53	32	*2	5	4
Schalke 04			39	4	*3	*3
W. Bremen			37	6	6	6
VfL Wolfsburg				7	7	7
Hannover 96	30	75	35	8	8	8

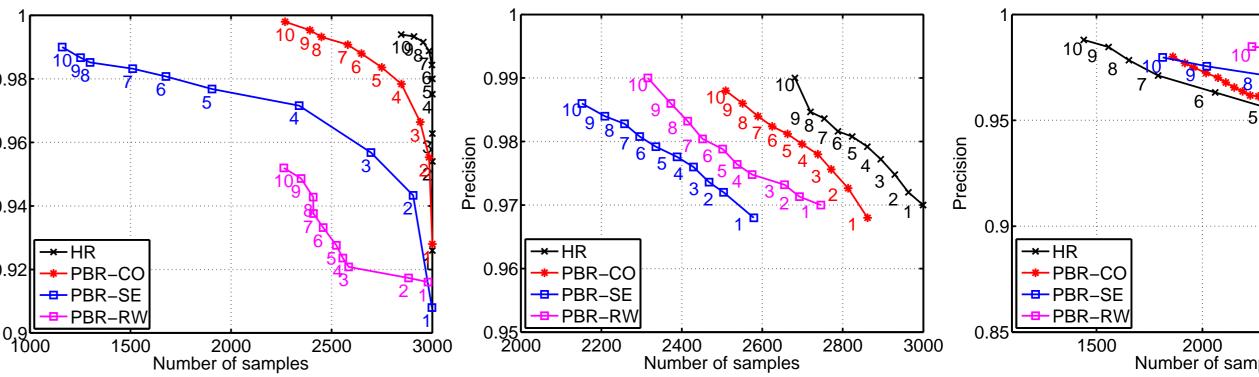


A Special Case

- lacktriangle Each option o_i is associated with a random variable X_i .
- lacktriangle The random variables X_i take values in a set Ω that is only partially ordered by a preference relation \prec .

$$ullet y_{i,j} = \mathrm{P}(X_i \prec X_j) + rac{1}{2} \Big(\mathrm{P}(X_i \sim X_j) + \mathrm{P}(X_i \perp X_j) \Big)$$

$$oldsymbol{ar{y}}_{i,j} = rac{1}{n_i n_j} \sum_{\ell=1}^{n_i} \sum_{\ell'=1}^{n_j} \left[\mathbb{I}\{x_i^\ell \prec x_j^{\ell'}\} + rac{1}{2} \left[\mathbb{I}\{x_i^\ell \sim x_j^{\ell'}\} + \mathbb{I}\{x_i^\ell \perp x_j^{\ell'}\}
ight] \right]$$



Theorem (Expected sample complexity for SE ranking)

Let $\mathcal{O} = \{o_1, \ldots, o_K\}$ be a set of options. Assume $o_i \prec^{\operatorname{SE}} o_i$ iff i < jwithout loss of generality and $y_i
eq y_j$ for all $1 \leq i
eq j \leq K$. Let

$$b_i = \left | \left (rac{4}{y_i - y_{K-\kappa+1}}
ight)^2 \log rac{2K^2 n_{ ext{max}}}{\delta}
ight | ext{ for } i \in [K-\kappa] ext{ and }$$
 $b_j = \left | \left (rac{4}{y_j - y_{K-\kappa}}
ight)^2 \log rac{2K^2 n_{ ext{max}}}{\delta}
ight | ext{ for } j = K-\kappa+1,\ldots,K.$

Then, whenever $n_{\max} \geq b_{K-\kappa} = b_{K-\kappa+1}$, PBR-SE terminates after $\sum_{i \neq j} b_i = \sum_{i=1}^{K-\kappa} (K-1)b_i + \sum_{j=K-\kappa+1}^K (K-1)b_j$ pairwise comparisons and outputs the optimal solution with probability at least $(1-\delta)$.

- [1] Maron, O., Moore, A.: Hoeffding races: accelerating model selection search for classification and function approximation. NIPS, pp. 59–66 (1994)
- [2] Aslam, J.A. and Decatur, S.E.: General bounds on statistical query learning and PAC learning with noise via hypothesis boosting, Inf. Comput. 141(2):85–118
 - [3] Funderlic, R.E. and Meyer, C.D.: Sensitivity of the stationary distribution vector for an ergodic Markov chain, Linear Algebra and its Applications 76(1):1-17