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Value-based Top-k Selection (TKS) (Maron&Moore, 1994)
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Preference-based Top-k Selection (TKS)

I Pairwise preferences over the set of options
I Four possible outcomes of a single pairwise comparison

between oi and oj :
I oi ≺ oj ⇒ Yi,j = 0 ((strict) preference for oj)
I oi � oj ⇒ Yi,j = 1 ((strict) preference for oi )
I oi ∼ oj ⇒ Yi,j = 1/2 (indifference)
I oi ⊥ oj ⇒ Yi,j = 1/2 (incomparability)

I yi ,j = E [Yi ,j ]
I if yi,j > 1/2 then oi is preferred to oj
I It can be estimated on the basis of a finite sample

yi,j ≈ ȳi,j =
1

n

n∑

`=1

y `
i,j



Preference-based Top-k Selection (TKS)
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Ranking procedures

yi ,j = E [Yi ,j ]

1. Copeland’s ranking: (CO): oi ≺CO oj if and only if di < dj ,
where

di = #{k ∈ [K ] | 1/2 < yi ,k} ,

I An option oi is preferred to oj whenever oi “beats” more
options than oj does.

2. Sum of expectations (SE) ranking: oi ≺SE oj if and only if

yi =
1

K − 1

∑

k 6=i

yi ,k <
1

K − 1

∑

k 6=j

yj ,k = yj .

3. The idea of the Random walk (RW) ranking is to handle the
matrix Y = [yi ,j ]K×K as a transition matrix S of a Markov
chain and order the options based on its stationary
distribution.
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Value-based Top-k Selection (TKS) [1]
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Preference-based Top-k Selection (TKS)
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Resolving Preferential Cycles

yi,j = E [Yi,j], Y = [yi,j]K×K
1. Copeland’s ranking: (CO): oi ≺CO oj if and only if di < dj, where

di = #{k ∈ [K] | 1/2 < yi,k} ,

I An option oi is preferred to oj whenever oi “beats” more options than oj does.

2. Sum of expectations (SE) ranking: CO: oi ≺SE oj if and only if

yi =
1

K − 1

∑

k 6=i
yi,k <

1

K − 1

∑

k 6=j
yj,k = yj .

3. The idea of the Random walk (RW) ranking is to handle the matrix Y as a
transition matrix S of a Markov chain and order the options based on its
stationary distribution.

Theorem (Expected sample complexity for Copeland’s ranking)

Let O = {o1, . . . , oK} be a set of options such that ∆i,j = yi,j − 1/2 6= 0
for all i, j ∈ [K]. The expected number of pairwise comparison taken by
PBR-CO is bounded by

K∑

i=1

∑

j 6=i

⌈
1

2∆2
i,j

log
2K2nmax

δ

⌉
.

Moreover, the probability that no optimal solution is found by PBR-CO is at
most δ if ni,j ≤ nmax for all i, j ∈ [K].

Sampling Strategies

IAlgorithm PBR (Y1,1, . . . , YK,K, κ, nmax, δ)

1. Initially, sample each Yi,j
2. In each iteration, calculate ȳi,j = 1

ni,j

∑ni,j
`=1 y

`
i,j and its confidence interval

[ȳi,j − ci,j, ȳi,j + ci,j] with ci,j =
√

1
2ni,j

log 2K2nmax

δ

3. and decide which Yi,j will be sampled next based on the specific ranking
procedure of interest

I Copeland’s ranking: 1/2 /∈ [ȳi,j − ci,j, ȳi,j + ci,j]

I Sum of expectations (SE): yi ∈ [ȳi − ci, ȳi + ci] where
ȳi = 1

K−1

∑
k 6=i ȳi,k and ci = 1

K−1

∑
j 6=i ci,j

I Random walk (RW) ranking: transform Ȳ into stochastic matrix S̄
I si,j ∈ [s̄i,j − ci,j, s̄i,j + ci,j], where ci,j = K

3
maxk ci,k

∑
` ȳ`,i (see Lemma 1-2 in [2])

I Let Sv = 1v and S̄v̄ = 1v̄. Then, according to [3], we have

‖v − v̄‖max ≤ const.× max
1≤i≤K

∑

j

|si,j − s̄i,j| ≤ const.× max
1≤i≤K

∑

j

ci,j

Experiments: Bundesliga

I soccer matches of the last ten seasons from the German Bundesliga
I uniform sampling as baseline
I δ = 0.1, κ = 3, nmax = {100, 500, 1000, 5000, 10000}

Team W L T ≺CO≺SE≺RW

B. München 77 33 30 *1 *1 *1
B. Dortmund 56 49 35 *3 *2 5
B. Leverkusen 55 49 36 5 4 *2
VfB Stuttgart 55 53 32 *2 5 4
Schalke 04 54 47 39 4 *3 *3
W. Bremen 52 51 37 6 6 6
VfL Wolfsburg 44 66 30 7 7 7
Hannover 96 30 75 35 8 8 8 10
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A Special Case

I Each option oi is associated with a random variable Xi.
I The random variables Xi take values in a set Ω that is only partially ordered by

a preference relation �.

Iyi,j = P(Xi ≺ Xj) + 1
2

(
P(Xi ∼ Xj) + P(Xi⊥Xj)

)

I ȳi,j = 1
ninj

∑ni
`=1

∑nj
`′=1

[
I{x`i ≺ x`

′
j }+ 1

2

[
I{x`i ∼ x`

′
j }+ I{x`i⊥ x`

′
j }
]]
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Theorem (Expected sample complexity for SE ranking)

Let O = {o1, . . . , oK} be a set of options. Assume oi ≺SE oj iff i < j
without loss of generality and yi 6= yj for all 1 ≤ i 6= j ≤ K. Let

bi =

⌈(
4

yi−yK−κ+1

)2

log 2K2nmax

δ

⌉
for i ∈ [K − κ] and

bj =

⌈(
4

yj−yK−κ

)2

log 2K2nmax

δ

⌉
for j = K − κ+ 1, . . . ,K.

Then, whenever nmax ≥ bK−κ = bK−κ+1, PBR-SE terminates after∑
i6=j bi =

∑K−κ
i=1 (K − 1)bi +

∑K
j=K−κ+1(K − 1)bj pairwise comparisons

and outputs the optimal solution with probability at least (1− δ).

References
[1] Maron, O., Moore, A.: Hoeffding races: accelerating model selection search for classification and function approximation. NIPS, pp. 59–66 (1994)
[2] Aslam, J.A. and Decatur, S.E.: General bounds on statistical query learning and PAC learning with noise via hypothesis boosting, Inf. Comput. 141(2):85–118
[3] Funderlic, R.E. and Meyer, C.D.: Sensitivity of the stationary distribution vector for an ergodic Markov chain, Linear Algebra and its Applications 76(1):1–17


