Top-k Selection based on Adaptive Sampling of Noisy Preferences

Róbert Busa-Fekete1,2 Balázs Szörényi2,3 Paul Weng4 Weiwei Cheng1 Eyke Hüllermeier1

1Computational Intelligence Group, Philipps University Marburg, Marburg, Germany
2Research Group on Artificial Intelligence, Hungarian Academy of Sciences and University of Szeged, Szeged, Hungary
3INRIA Lille - Nord Europe, SequeL project, Villeneuve d’Ascq, France
4Laboratory of Computer Science of Paris 6, University Pierre and Marie Curie, Paris, France

June 19, 2013, ICML
Value-based Top-k Selection (TKS) (Maron&Moore, 1994)

Ground Truth:
- $E(X_1) = \mu_1$
- $E(X_2) = \mu_2$
- $E(X_3) = \mu_3$
- $E(X_4) = \mu_4$
- $E(X_5) = \mu_5$

Top-K Set:
- o_2
- o_5
- o_4
- o_1
- o_3

Sampling Values:
- $x_2 = 5.2$
- $x_3 = 9.1$
- $x_1 = 8.5$

Estimation:

Hoeffding-Race:

Expected Value:
- X_1
- X_2
- X_3
- X_4
- X_5
Preference-based Top-k Selection (TKS)

- Pairwise preferences over the set of options
- Four possible outcomes of a single pairwise comparison between o_i and o_j:
 - $o_i \prec o_j \Rightarrow Y_{i,j} = 0$ ((strict) preference for o_j)
 - $o_i \succ o_j \Rightarrow Y_{i,j} = 1$ ((strict) preference for o_i)
 - $o_i \sim o_j \Rightarrow Y_{i,j} = 1/2$ (indifference)
 - $o_i \perp o_j \Rightarrow Y_{i,j} = 1/2$ (incomparability)
- $y_{i,j} = \mathbb{E}[Y_{i,j}]$
 - if $y_{i,j} > 1/2$ then o_i is preferred to o_j
 - It can be estimated on the basis of a finite sample

\[y_{i,j} \approx \bar{y}_{i,j} = \frac{1}{n} \sum_{\ell=1}^{n} y_{i,j}^{\ell} \]
Preference-based Top-k Selection (TKS)

STOCHASTIC PAIRWISE PREFERENCES

GROUND TRUTH

GROUNDED TRUTH

PREFERENCE-BASED RACING

PREFERENCE-BASED RACING

RANKING PROCEDURE

TOP-K SET

TARGET RANKING

SAMPLING PREFERENCES

ESTIMATION

ESTIMATION

\begin{align*}
& o_1 \succ o_3 \quad (Y_{1,3} = 0) \\
& o_1 \sim o_4 \quad (Y_{1,4} = 1/2) \\
& o_4 \succ o_2 \quad (Y_{2,4} = 1) \\
& o_2 \succ o_1 \quad (Y_{1,2} = 1) \\
& o_1 \sim o_3 \quad (Y_{1,3} = 1/2) \\
& \vdots & \vdots
\end{align*}
Ranking procedures

\[y_{i,j} = E[Y_{i,j}] \]

1. **Copeland’s ranking** (CO): \(o_i \prec^{\text{CO}} o_j \) if and only if \(d_i < d_j \), where

\[d_i = \#\{ k \in [K] | 1/2 < y_{i,k} \} \]

- An option \(o_i \) is preferred to \(o_j \) whenever \(o_i \) “beats” more options than \(o_j \) does.

2. **Sum of expectations** (SE) ranking: \(o_i \prec^{\text{SE}} o_j \) if and only if

\[
y_i = \frac{1}{K-1} \sum_{k \neq i} y_{i,k} < \frac{1}{K-1} \sum_{k \neq j} y_{j,k} = y_j.
\]

3. The idea of the **Random walk** (RW) ranking is to handle the matrix \(Y = [y_{i,j}]_{K \times K} \) as a transition matrix \(S \) of a Markov chain and order the options based on its stationary distribution.
Thanks!