Top-k Selection based on Adaptive Sampling of Noisy Preferences

Róbert Busa-Fekete^{1,2} Balázs Szörényi^{2,3} Paul Weng⁴ Weiwei Cheng¹ Eyke Hüllermeier¹

¹Computational Intelligence Group, Philipps University Marburg, Marburg, Germany
²Research Group on Artificial Intelligence, Hungarian Academy of Sciences and University of Szeged, Szeged, Hungary
³INRIA Lille - Nord Europe, SequeL project, Villeneuve d'Ascq, France
⁴Laboratory of Computer Science of Paris 6, University Pierre and Marie Curie, Paris, France

June 19, 2013, ICML

Value-based Top-k Selection (TKS) (Maron&Moore, 1994)

Preference-based Top-k Selection (TKS)

- Pairwise preferences over the set of options
- Four possible outcomes of a single pairwise comparison between o_i and o_j:
 - $o_i \prec o_j \Rightarrow Y_{i,j} = 0$ ((strict) preference for o_j)
 - $o_i \succ o_j \Rightarrow Y_{i,j} = 1$ ((strict) preference for o_i)

•
$$o_i \sim o_j \Rightarrow Y_{i,j} = 1/2$$
 (indifference)

- $o_i \perp o_j \Rightarrow Y_{i,j} = 1/2$ (incomparability)
- $\blacktriangleright y_{i,j} = \mathbb{E}\left[Y_{i,j}\right]$
 - if $y_{i,j} > 1/2$ then o_i is preferred to o_j
 - It can be estimated on the basis of a finite sample

$$y_{i,j} \approx \bar{y}_{i,j} = \frac{1}{n} \sum_{\ell=1}^{n} y_{\ell,j}^{\ell}$$

Preference-based Top-k Selection (TKS)

Ranking procedures

- $y_{i,j} = \mathbb{E}\left[Y_{i,j}\right]$
 - 1. Copeland's ranking: (CO): $o_i \prec^{CO} o_j$ if and only if $d_i < d_j$, where

$$d_i = \#\{k \in [K] \,|\, 1/2 < y_{i,k}\} \ ,$$

- An option o_i is preferred to o_j whenever o_i "beats" more options than o_j does.
- 2. Sum of expectations (SE) ranking: $o_i \prec^{SE} o_j$ if and only if

$$y_i = rac{1}{K-1} \sum_{k \neq i} y_{i,k} < rac{1}{K-1} \sum_{k \neq j} y_{j,k} = y_j$$
.

3. The idea of the Random walk (RW) ranking is to handle the matrix $\mathbf{Y} = [y_{i,j}]_{K \times K}$ as a transition matrix **S** of a Markov chain and order the options based on its stationary distribution.

Thanks!

