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Introduction

I We propose an efficient policy search method for preference-based reinforcement
learning

I Evolutionary Direct Policy Search (EDPS) [1]
I Assume a parametric policy space

Π = {πΘ |Θ ∈ Rp}
I Target function is the expected total reward

ρπ = E
h∼Pπ

[V (h)]

that is estimated based on rollouts
I Optimize it by using an Evolution strategy (ES), such as CMA-ES [2]

I If the number of rollouts is too large, the learning process gets slow
I If the number of rollouts is too small, the ranking over the offsprings is not reliable enough

I Adaptive control of the number of rollouts using racing algorithms

Algorithm 1 EDPS (M, µ, λ, nmax, δ)

Initialization: select an initial parameter vector Ω(0) and an initial set of candi-
date solutions Θ1

(0), . . . ,Θµ
(0), σ(0) is the identity permutation

t = 0
repeat
t = t+ 1
for ` = 1, . . . , λ do . Sample new solutions

Θ
(t)
` ∼ F (Ω(t−1),Θ

(t−1)

σ(t−1)(1)
, . . . ,Θ

(t−1)

σ(t−1)(µ)
)

end for
σ(t) = Racing

(
M, π

Θ
(t)
1
, . . . , π

Θ
(t)
λ
, µ, nmax, δ

)
Ω(t) = Update(Ω(t−1),Θ

(t)

σ(t)(1)
, . . . ,Θ

(t)

σ(t)(µ)
)

until Stopping criterion fulfilled
Return π

Θ
(t)
1

Value-based Racing Algorithm [3]

IX1, . . . , XK are random variables with unknown distribution functions
PX1

, . . . ,PXK
and finite expected values µi =

∫
xdPXi

(x)

I We solve the following optimization task with high probability∑
i∈I

∑
j 6=i

I{µj < µi} −→ max
I⊆[K]: |I|=κ

I Hoeffding bound: µi ∈
[
µ̂i −

√
1

2ni
log 2

δ
, µ̂i +

√
1

2ni
log 2

δ

]
with probability at least 1− δ
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Preference-based Reinforcement Learning [4,5]

I Rollout: generating a history h ∈ H(T ) by following a policy π for a given
MDPM = (S,A,P, r)

I Assumption: preference relation ≺ on H(T )

I Prerequisite: “lifting” of the preference relation ≺ on H(T ) to a preference
relation� on the space of policies Π

I Each policy generates a distribution over the histories H(T )

I We can associate policies with random variables X
I Decision model (�):

X � Y if and only if P(Y ≺ X) < P(X ≺ Y )

I Preferential cycles: X1� X2, X2� X3, X3� X1

Preference-based EDPS

I Evolution Strategies only need a ranking over the candidate solutions to
update the parameters of F (·) (distribution over the search space)

I Let’s race based on preferences!! ⇒ Preference-based EDPS
I Resolving the preferential cycles by using Copeland relation:

Xi�C Xj ⇔ di < dj, where di = #{k : Xk � Xi, Xk ∈ X}
I We solve the following optimization task with high probability∑

i∈I

∑
j 6=i

I{Xj � Xi} −→ max
I⊆[K]: |I|=κ

I We need an efficient estimator of S(Xi, Xj) = P(Xi ≺ Xj)

I A two-sample U-statistic called the Mann-Whitney U-statistic

ŝi,j = Ŝ(Xi,Xj) =

=
1

n2

n∑
`=1

n∑
`′=1

[
I{x`i ≺ x

`′

j }+
1

2

[
I{x`i ∼ x`

′

j }+ I{x`i⊥ x`
′

j }
]]

where Xi = {x1
i , . . . , x

n
i } ∼ Xi and Xj = {x1

j, . . . , x
n
j } ∼ Xj

I Hoeffding, 1963, §5b: For any ε > 0, using the notations introduced above,

P
(∣∣∣Ŝ(X,Y)− S(X,Y )

∣∣∣ ≥ ε) ≤ 2 exp(−2nε2) .

Preference-based Racing Algorithm

1. Input: X1, . . . , XK, κ, nmax, δ

2. Iteratively sample X1, . . . , XK

3. Calculate ŝi,j for all 1 ≤ i, j ≤ K
4. and their confidence intervals as [ŝi,j − ci,j, ŝi,j + ci,j] where

ci,j =

√
1

2n
log

2K2nmax

δ

5. When can we stop sampling an option?
I Number of options that are beaten by i so far: zi = |{j : ui,j < 1/2, j 6= i}|
I Number of options that beat i so far: oi = |{j : `i,j > 1/2, j 6= i}|
IC =

{
i : K − κ <

∣∣{j : K − zj < oi}
∣∣}

ID =
{
i : κ <

∣∣{j : K − oj < zi}
∣∣}

6. If (i, j ∈ C ∪D) ∨ (1/2 6∈ [`i,j, ui,j]) then do not update ŝi,j any more

Medical Experiments

I Medical treatment design for cancer clinical trials
I State s = (S,X) describes the health condition of the patient: S is the

tumor size and X the level of toxicity
I Action is the dosage level a ∈ [0, 1]
I A history h represents a treatment of a virtual patient

1. h′ � h if the patient survives in h but not in h′, and both histories are incomparable
(h′⊥ h) if the patient does neither survive in h′ nor in h.

2. Otherwise, preference depends on the worst wellness of the patient and the final tumor size:
h′ � h if (and only if) CX ≤ C′X and CS ≤ C′S where CX and C′X denote the
maximal toxicity during the whole treatment

3. Pareto dominance
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(b) 12 months

Illustration of patient status under different treatment policies. On the x-axis is the tumor size
after 6 (a) and 12 (b) months, on the y-axis the highest toxicity during the treatment. The
death rates are shown in parentheses at the upper right corner.
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