Preference-based Evolutionary Direct Policy Search

Róbert Busa-Fekete^{1,2} Balázs Szörényi^{2,3} Paul Weng⁴ Weiwei Cheng¹

¹Computational Intelligence Group, Philipps University Marburg, Marburg, Germany ²Research Group on AI, Hungarian Acad. Sci. and Univ. of Szeged, Szeged, Hungary ³INRIA Lille - Nord Europe, SequeL project, Villeneuve d'Ascq, France ⁴Laboratory of Computer Science of Paris 6, University Pierre and Marie Curie, Paris, France

Introduction

- We propose an efficient policy search method for preference-based reinforcement learning
- Evolutionary Direct Policy Search (EDPS) [1]
- Assume a parametric policy space

$$\Pi = \{\pi_{\Theta} \, | \, \Theta \in \mathbb{R}^p\}$$

► Target function is the *expected total reward*

$$ho_{\pi} = \mathop{\mathbb{E}}\limits_{\mathrm{h}\sim\mathrm{P}_{\pi}} \left[V(\mathrm{h})
ight]$$

that is estimated based on **rollouts**

► Optimize it by using an *Evolution strategy* (ES), such as CMA-ES [2]

Preference-based EDPS

Eyke Hüllermeier¹

- ► Evolution Strategies only need a ranking over the candidate solutions to update the parameters of F(·) (distribution over the search space)
 ► Let's race based on preferences!! ⇒ Preference-based EDPS
- ► Resolving the preferential cycles by using *Copeland relation*:

 $X_i \ll_C X_j \Leftrightarrow d_i < d_j, ext{ where } d_i = \#\{k: X_k \ll X_i, X_k \in \mathcal{X}\}$

► We solve the following optimization task with high probability

$$\sum_{i\in I}\sum_{j
eq i}\mathbb{I}\{X_j\ll X_i\}\ \longrightarrow\ \max_{I\subseteq [K]:\ |I|=K}$$

 \blacktriangleright We need an *efficient estimator* of $S(X_i,X_j)=\mathrm{P}(X_i\prec X_j)$

- If the number of rollouts is too large, the learning process gets slow
- ► If the number of rollouts is too small, the ranking over the offsprings is not reliable enough
- Adaptive control of the number of rollouts using racing algorithms

Algorithm 1 EDPS $(\mathcal{M}, \mu, \lambda, n_{\max}, \delta)$

Initialization: select an initial parameter vector $\Omega^{(0)}$ and an initial set of candidate solutions $\Theta_1^{(0)}, \ldots, \Theta_\mu^{(0)}$, $\sigma^{(0)}$ is the identity permutation t = 0

repeat

$$\begin{split} t &= t + 1 \\ \text{for } \ell = 1, \dots, \lambda \text{ do } & \triangleright \text{ Sample new solutions} \\ \Theta_{\ell}^{(t)} &\sim F(\Omega^{(t-1)}, \Theta_{\sigma^{(t-1)}(1)}^{(t-1)}, \dots, \Theta_{\sigma^{(t-1)}(\mu)}^{(t-1)}) \\ \text{end for } \\ \sigma^{(t)} &= \text{Racing} \left(\mathcal{M}, \pi_{\Theta_{1}^{(t)}}, \dots, \pi_{\Theta_{\lambda}^{(t)}}, \mu, n_{\max}, \delta \right) \\ \Omega^{(t)} &= \text{Update}(\Omega^{(t-1)}, \Theta_{\sigma^{(t)}(1)}^{(t)}, \dots, \Theta_{\sigma^{(t)}(\mu)}^{(t)}) \\ \text{until Stopping criterion fulfilled} \\ \text{Return } \pi_{\Theta_{1}^{(t)}} \end{split}$$

Value-based Racing Algorithm [3]

 $igstarrow X_1, \ldots, X_K$ are random variables with unknown distribution functions

• A two-sample U-statistic called the Mann-Whitney U-statistic $\hat{s}_{i,j} = \hat{S}(X_i, X_j) = \\ = \frac{1}{n^2} \sum_{\ell=1}^n \sum_{\ell'=1}^n \left[\mathbb{I}\{x_i^{\ell} \prec x_j^{\ell'}\} + \frac{1}{2} [\mathbb{I}\{x_i^{\ell} \sim x_j^{\ell'}\} + \mathbb{I}\{x_i^{\ell} \perp x_j^{\ell'}\}] \right] \\ \text{where } X_i = \{x_i^1, \dots, x_i^n\} \sim X_i \text{ and } X_j = \{x_j^1, \dots, x_j^n\} \sim X_j \\ \text{• Hoeffding, 1963, §5b: For any } \epsilon > 0, \text{ using the notations introduced above,} \\ P\left(\left| \hat{S}(X, Y) - S(X, Y) \right| \ge \epsilon \right) \le 2 \exp(-2n\epsilon^2) .$

Preference-based Racing Algorithm

1. Input: $X_1, \ldots, X_K, \kappa, n_{\max}, \delta$ 2. Iteratively sample X_1, \ldots, X_K 3. Calculate $\hat{s}_{i,j}$ for all $1 \leq i, j \leq K$ 4. and their confidence intervals as $[\hat{s}_{i,j} - c_{i,j}, \hat{s}_{i,j} + c_{i,j}]$ where

$$c_{i,j} = \sqrt{rac{1}{2n} \log rac{2 oldsymbol{K}^2 n_{ ext{max}}}{\delta}}$$

5. When can we stop sampling an option? Number of options that are beaten by *i* so far: $z_i = |\{j : u_{i,j} < 1/2, j \neq i\}|$ Number of options that beat *i* so far: $o_i = |\{j : \ell_{i,j} > 1/2, j \neq i\}|$ $C = \{i : K - \kappa < |\{j : K - z_j < o_i\}|\}$ $D = \{i : \kappa < |\{j : K - o_j < z_i\}|\}$ 6. If $(i, j \in C \cup D) \lor (1/2 \notin [\ell_{i,j}, u_{i,j}])$ then do not update $\hat{s}_{i,j}$ any more

 P_{X_1}, \ldots, P_{X_K} and finite expected values $\mu_i = \int x dP_{X_i}(x)$ • We solve the following optimization task with high probability

 $\sum_{i \in I} \sum_{j \neq i} \mathbb{I}\{\mu_j < \mu_i\} \longrightarrow \max_{I \subseteq [K]: |I| = \kappa}$ $\bullet \text{ Hoeffding bound: } \mu_i \in \left[\widehat{\mu}_i - \sqrt{\frac{1}{2n_i} \log \frac{2}{\delta}}, \widehat{\mu}_i + \sqrt{\frac{1}{2n_i} \log \frac{2}{\delta}}\right]$ with probability at least $1 - \delta$

Preference-based Reinforcement Learning [4,5]

Rollout: generating a history h ∈ H^(T) by following a policy π for a given MDP M = (S, A, P, r)
Assumption: preference relation ≺ on H^(T)
Prerequisite: "lifting" of the preference relation ≺ on H^(T) to a preference relation ≪ on the space of policies Π
Each policy generates a distribution over the histories H^(T)
We can associate policies with random variables X
Decision model (≪): X ≪ Y if and only if P(Y ≺ X) < P(X ≺ Y)

Medical Experiments

- Medical treatment design for cancer clinical trials
- State s = (S, X) describes the health condition of the patient: S is the tumor size and X the level of toxicity
- \blacktriangleright Action is the dosage level $a \in [0,1]$
- A history h represents a treatment of a virtual patient
- 1. $\mathbf{h'} \preceq \mathbf{h}$ if the patient survives in \mathbf{h} but not in $\mathbf{h'}$, and both histories are incomparable $(\mathbf{h'} \perp \mathbf{h})$ if the patient does neither survive in $\mathbf{h'}$ nor in \mathbf{h} .
- 2. Otherwise, preference depends on the worst wellness of the patient and the final tumor size:
- $\mathrm{h}' \preceq \mathrm{h}$ if (and only if) $C_X \leq C'_X$ and $C_S \leq C'_S$ where C_X and C'_X denote the
- maximal toxicity during the whole treatment
- 3. Pareto dominance

 \blacktriangleright Preferential cycles: $X_1 \ll X_2$, $X_2 \ll X_3$, $X_3 \ll X_1$

Illustration of patient status under different treatment policies. On the x-axis is the tumor size after 6 (a) and 12 (b) months, on the y-axis the highest toxicity during the treatment. The death rates are shown in parentheses at the upper right corner.

References

 Heidrich-Meisner, V., Igel, C.: Hoeffding and Bernstein races for selecting policies in evolutionary direct policy search. ICML, pp. 401–408 (2009)
 Hansen, N., Kern, S.: Evaluating the CMA evolution strategy on multimodal test functions. PPSN VIII, pp. 282–291 (2004)
 Maron, O., Moore, A.: Hoeffding races: accelerating model selection search for classification and function approximation. NIPS, pp. 59–66 (1994)
 Fürnkranz, J., Hüllermeier, E., Cheng, W., Park, S.: Preference-based reinforcement learning: a formal framework and a policy iteration algorithm. Machine Learning 89(1-2), 123–156 (2012)
 Akrour, R., Schoenauer, M., Sebag, M.: Preference-based policy learning. ECML/PKDD, pp. 12–27 (2011)