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Label Ranking — An Example
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Instances are mapped to total orders over a fixed set
of alternatives/labels.
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Label Ranking: Training Data
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Preferences

A>B,C>D
B>C
B>D,A>D,C>D,A>C

C>A,C>D,A>B
B>D,A>D
D>AA>B,C>B,A>C

... no demand for full rankings!

Instances are
associated with
pairwise
preferences
between labels.



Label Ranking: Prediction
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Label Ranking: Prediction
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new instance (i) = position of j-th label y;



Label Ranking: Prediction
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Label Ranking: Prediction
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Label Ranking: A Formal Setting

To learn a label ranker M* : X — Sy, such that

M* € argmin j D(M (x), ) dP(x, )
MeM XXSg

NOTE In the training data, a ranking m can be incomplete,

e, Vo) > Ya(2) > " > Yo()) where ] < K and
{c(1)..0()} c{1..K}. We denote, for example, the ranking
Y, >y, >ysasm = (2,1,0,0,3).



Pairwise and Labelwise Decomposition

Pairwise decomposition

— e.g., [Hullermeier et al., Al 08]

— CON quadratic number of models, higher computational cost
— CON non-trivial aggregation step

— PRO higher accuracy

Labelwise decomposition

— e.g., [Dekel et al., NIPS 03], [Cheng et al., ICML 10] and THIS WORK
— PRO linear number of models, lower computational cost

— PRO trivial or no aggregation step

— CON lower accuracy



Our Method LWD

— A meta-learning technique for label ranking directly uses the ranks of
labels.

— When training data ID consist of complete training information, we
learn a model M,: X = {1 ... K} on the data

Dy ={ (1) | (x, ) € D, 13, = Ty (k) }.

— Since the ranks have a natural order, it leads to K ordinal classification
problems.
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Our Method LWD cont.

When training data ID consist of incomplete training information, the
previous setup is not directly applicable.

Nevertheless, we can derive some information about the rank 7(k):
‘IF|r|=Jand (k) =r >0, THEN (k) € {r,r+1,..,r+ K —J}.
- If m(k) = 0, we can only derive w(k) € {1, ..., K}.

More information under additional assumptions. For example, if  is
known to be the top of 7, then

{ﬁ(k) = (k) if m(k) >0
t(k)e{J+1,..,K} if m(k) =0



A Generalized Loss Function

We make use of a generlized loss function, which compare a point
predition with a set of possible “true” values:

L(7,R) = %gl(r’ r),
where R € {1...K} is a set of ranks, 7 is the predicted rank, and
[:{1...K}? = Ris the loss between predicted and true ranks.

In the figure on the left:

e I(#,1)=|F—r]

* blueline: R = {6}

* redline: R = {4,5,6,7}
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Generalized Nearest Neighbor Estimation

Given a query instance x, a prediction 7 is obtained by combining the
(possibly incomplete) rankings 4, ..., Ty from the ) nearest neighbors
of x in the training data ID. Considering a loss function D on Sy that is
labelwise decomposable, the empirical risk of 7 is given by

Q Q K
D D) = ) ) L(Rin, ()
n=1

n=1k=1
where Ry, , is the set of ranks m;, assigned to label yy,.

This leads to a straightforward procedure. Namely, for each label y;, we
select the rank r € {1 ... K} that minimize 23=1 L(Rk,n, r).

But since each rank can only be assigned once, the procedure above is
not valid.



Generalized Nearest Neighbor Estimation cont.

The minimization of 23:1 D (mt,, ) requires the solution of an optimal
assignment problem:

* Label y, must be uniquely assigned to rankr = 7t (k) € {1 ...K};
* Assigning y, to rank r has a cost of L (7);

* The goal is to minimize the sum of all assignment costs.

This optimal assignment problem can be solved with the Hungarian
algorithm. Its complexity for solving the problem above is O (K 3).

By solving the optimal assignment problem, we find the prediction 7
that minimizes Y r_; Ly (7).



Experiments

We empirically test our LWD framework with L1 loss, and compare it
to another instance-based label ranking algorithm PL, which is based
on the Plackett-Luce model for rankings. [Cheng et al., ICML 10]

Both synthetic and real-world data are used.

m #attributes | _# labels

authorship

glass 214 9 6
iris 150 4 3
pendigits 10992 16 10
segment 2310 18 7
vheicle 846 18 4
vowel 528 10 11
wine 178 13 3
sushi 5000 11 10

students 404 126 5
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Kendall’s tau on Synthetic Data

complete ranking

30% missing labels

60% missing labels

LWD PL LWD PL LWD PL
authorship | .933+£.016 .936£.015 | 9254+.018 .833£.030 | .891£.021 .601+£.054
glass 840075  .841=.067 | 819x£.078 .669=.064 | .721x.072 .395+.068
iris 960+.036  .960x£.036 | .932+.051 .896+.069 | .876£.068 .787x.111
pendigits 940£.002  .939+.002 | .924+£.002 .770£.004 | .709£.005  .4344.007
segment 953+.006 .950£.005 | 914£.009 .710£.013 | .624+£.020 .381+.020
vehicle 853+.031 .859+.028 | .8364.032  .753+£.032 | .767£.037  .5204.050
vowel 876+.021  .851+.020 | .821£.022 .612+.027 | .536£.034 .3274.033
wine 938+.050  .947x.047 | 933£.054 919+.059 | 921£.062 .863+.094
authorship | .933+£.016 .936£.015 | .9324+.017 .927x.017 | 923£.015 .886+.022
glass 840x.075 .841x£.067 | .838+.074  .8B09+.066 | .815£.075 .675+.069
iris 960£.036  .960+=.036 | 956£.036 .926=.051 | 932+£.048 .868+.070
pendigits 940£.002  .939+£.002 | 933£.002 918+.002 | .837£.004 .794+.004
segment 953£.006 .950+=.005 | 943£.005 .874%=.008 | .844+£.010 .674%.015
vehicle 853+.031 .859+.028 | .8514.033  .838+.030 | .818*.032 .765+.035
vowel Z76+.021  .851+£.020 | .867£.021 .785+.020 | .800£.021  .588+.024
wine 938+.050  .947x.047 | 936£.049 .926+.061 | .930£.059 .907+.066

above: labels missing at random
bottom: top-rank setting
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Kendall’s tau on Real-World Data

sushi 0% 10% 20% 30% 40% 50% 60% 70%

LWD 3234.012 3224011 320+£.011 3194.010  315+.011 308+.011 296+.011 277+.010
PL 321+.010  .320+£.010  .3184+.010  .3114.010  .2984.011 278+.010  246+.010  .2034.012
LWD 325+.012 3244011 324+.011 323+.011 323+.011 3231011 321+.011 316+.011
PL 321+.010  .320+£.010 3204011 320+£.011 3194.010  3164.010  310+.010  .303+.011
students 0% 10% 20% 30% 40% 50% 60% 70%

LWD 6414051 641+.051 640+.050  .640+.051 .638+.052 6371051 633+.054  .6264.055
PL 386£.028  .3844.027 3824+.026  .3774£.029  .3654.025 .3504.027 3274.027 2744.033
LWD .6414.051 6414.051 6414.051 641+.051 6404051 6404.052  .638+.050  .628+.052
PL 386+£.028  3854£.028  3864.028  .3854.027  .3834+£.029  379+£.026  377£.026  .3714.028

above: labels missing at random
bottom: top-rank setting
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Kendall’s tau on Real-World Data cont.
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— Top rank setting contains more information than missing at
random setting.

— LWD is very robust against missing labels.
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Summary

We introduce labelwise decomposition as a new meta-learning
technique for label ranking.

It is realized for the specific case of nearest neighbor estimation.

This approach is based on absolute preference informaiton in the
form of ranks.

The task of risk minimization is formulized as an optimal assighnment
problem.

Empircal results indicate a very strong performance in the case of
missing label information.



