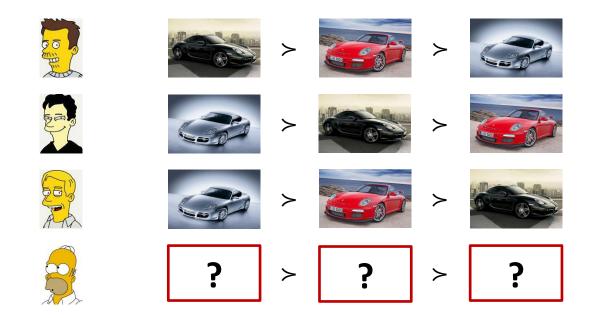
A Nearest Neighbor Approach to Label Ranking based on Generalized Labelwise Loss Minimization

Weiwei Cheng Amazon Germany

Eyke Hüllermeier University of Marburg Germany

Label Ranking – An Example



Instances are mapped to **total orders** over a fixed set of alternatives/labels.

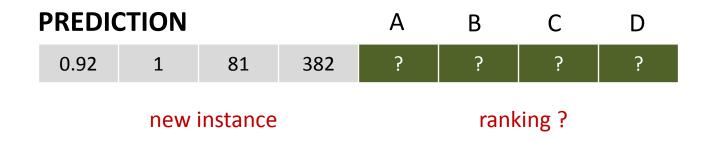
Label Ranking: Training Data

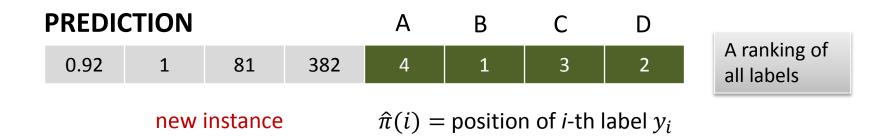
TRAINING

X1	X2	X3	X4	Preferences
0.34	0	10	174	A > B, C > D
1.45	0	32	277	$B \succ C$
1.22	1	46	421	B > D, A > D, C > D, A > C
0.74	1	25	165	C > A, C > D, A > B
0.95	1	72	273	B > D, A > D
1.04	0	33	158	D > A, A > B, C > B, A > C

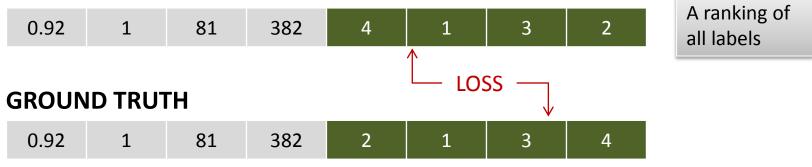
Instances are associated with pairwise preferences between labels.

... no demand for full rankings!





PREDICTION



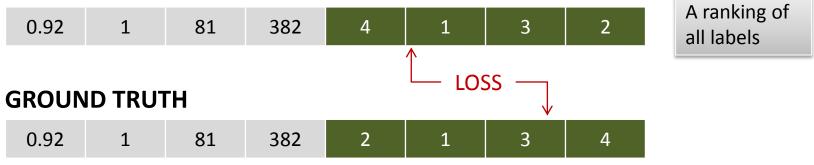
SPEARMAN

$$D(\bar{\pi}, \hat{\pi}) = \sqrt{\sum_{i=1}^{K} (\bar{\pi}(i) - \hat{\pi}(j))^2}$$
$$\rho = 1 - \frac{6 D^2(\bar{\pi}, \hat{\pi})}{K(K^2 - 1)}$$

RANK CORRELATION

LOSS

PREDICTION



KENDALL

$$D(\bar{\pi},\hat{\pi}) = \sum_{1 \le i < j \le K} \left[\left(\bar{\pi}(i) - \bar{\pi}(j) \right) \cdot \left(\hat{\pi}(i) - \hat{\pi}(j) \right) < 0 \right]$$
 LOSS

$$\tau = 1 - \frac{4 D(\bar{\pi}, \hat{\pi})}{K(K-1)}$$

RANK CORRELATION

Label Ranking: A Formal Setting

To learn a label ranker $\mathcal{M}^* : \mathbb{X} \to \mathbb{S}_K$, such that

$$\mathcal{M}^* \in \underset{\mathcal{M} \in \mathbf{M}}{\operatorname{argmin}} \int_{\mathbb{X} \times \mathbb{S}_K} D(\mathcal{M}(x), \overline{\pi}) \, d\mathbf{P}(x, \overline{\pi})$$

NOTE In the training data, a ranking π can be incomplete, i.e., $y_{\sigma(1)} > y_{\sigma(2)} > \cdots > y_{\sigma(J)}$, where J < K and $\{\sigma(1) \dots \sigma(J)\} \subset \{1 \dots K\}$. We denote, for example, the ranking $y_2 > y_1 > y_5$ as $\pi = (2,1,0,0,3)$.

Pairwise and Labelwise Decomposition

Pairwise decomposition

- e.g., [Hüllermeier et al., AI 08]
- CON quadratic number of models, higher computational cost
- CON non-trivial aggregation step
- **PRO** higher accuracy

Labelwise decomposition

- e.g., [Dekel et al., NIPS 03], [Cheng et al., ICML 10] and THIS WORK
- PRO linear number of models, lower computational cost
- **PRO** trivial or no aggregation step
- CON lower accuracy

Our Method LWD

- A meta-learning technique for label ranking directly uses the ranks of labels.
- When training data \mathbb{D} consist of complete training information, we learn a model $\mathcal{M}_k: \mathbb{X} \to \{1 \dots K\}$ on the data

$$\mathbb{D}_k = \{ (x_n, r_n) \mid (x_n, \overline{\pi}_n) \in \mathbb{D}, r_n = \overline{\pi}_n(k) \}.$$

 Since the ranks have a natural order, it leads to K ordinal classification problems.

Our Method LWD cont.

- When training data \mathbb{D} consist of incomplete training information, the previous setup is not directly applicable.
- Nevertheless, we can derive some information about the rank $\overline{\pi}(k)$:

IF
$$|\pi| = J$$
 and $\pi(k) = r > 0$, THEN $\bar{\pi}(k) \in \{r, r + 1, ..., r + K - J\}$.

• If
$$\pi(k) = 0$$
, we can only derive $\overline{\pi}(k) \in \{1, \dots, K\}$.

- More information under additional assumptions. For example, if π is known to be the top of $\overline{\pi}$, then

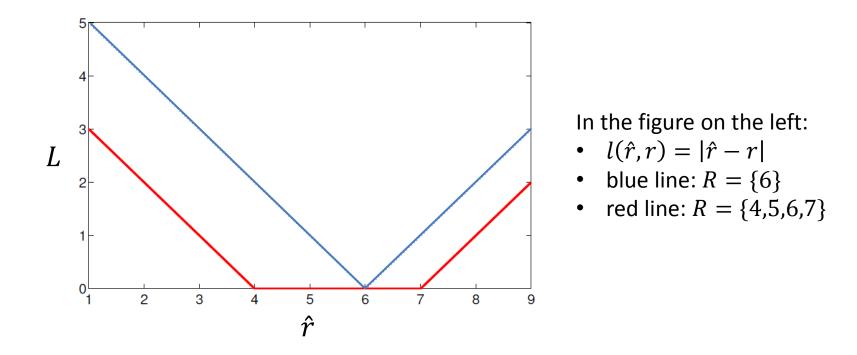
$$\{ \bar{\pi}(k) = \pi(k) & \text{if } \pi(k) > 0 \\ \bar{\pi}(k) \in \{ J+1, \dots, K \} & \text{if } \pi(k) = 0 \\ \end{cases}$$

A Generalized Loss Function

We make use of a generlized loss function, which compare a point predition with a set of possible "true" values:

$$L(\hat{r},R) = \min_{r \in R} l(\hat{r},r),$$

where $R \in \{1 ... K\}$ is a set of ranks, \hat{r} is the predicted rank, and $l: \{1 ... K\}^2 \rightarrow \mathbb{R}$ is the loss between predicted and true ranks.



Generalized Nearest Neighbor Estimation

Given a query instance x, a prediction $\hat{\pi}$ is obtained by combining the (possibly incomplete) rankings π_1, \ldots, π_Q from the Q nearest neighbors of x in the training data \mathbb{D} . Considering a loss function D on \mathbb{S}_K that is labelwise decomposable, the empirical risk of $\hat{\pi}$ is given by

$$\sum_{n=1}^{Q} D(\pi_n, \hat{\pi}) = \sum_{n=1}^{Q} \sum_{k=1}^{K} L(R_{k,n}, \hat{\pi}(k))$$

where $R_{k,n}$ is the set of ranks π_n assigned to label y_k .

This leads to a straightforward procedure. Namely, for each label y_k , we select the rank $r \in \{1 \dots K\}$ that minimize $\sum_{n=1}^{Q} L(R_{k,n}, r)$.

But since each rank can only be assigned once, the procedure above is not valid.

Generalized Nearest Neighbor Estimation cont.

The minimization of $\sum_{n=1}^{Q} D(\pi_n, \hat{\pi})$ requires the solution of an optimal assignment problem:

- Label y_k must be uniquely assigned to rank $r = \hat{\pi}(k) \in \{1 \dots K\};$
- Assigning y_k to rank r has a cost of $L_k(r)$;
- The goal is to minimize the sum of all assignment costs.

This optimal assignment problem can be solved with the Hungarian algorithm. Its complexity for solving the problem above is $\mathcal{O}(K^3)$.

By solving the optimal assignment problem, we find the prediction $\hat{\pi}$ that minimizes $\sum_{k=1}^{K} L_k(\pi)$.

Experiments

- We empirically test our LWD framework with L1 loss, and compare it to another instance-based label ranking algorithm PL, which is based on the Plackett-Luce model for rankings. [Cheng et al., ICML 10]
- Both synthetic and real-world data are used.

data set	# instances	# attributes	# labels
authorship	841	70	4
glass	214	9	6
iris	150	4	3
pendigits	10992	16	10
segment	2310	18	7
vheicle	846	18	4
vowel	528	10	11
wine	178	13	3
sushi	5000	11	10
students	404	126	5

Kendall's tau on Synthetic Data

	complete	ranking	30% miss	ing labels	60% miss	ing labels
	LWD	PL	LWD	PL	LWD	PL
authorship	.933±.016	.936±.015	.925±.018	$.833 \pm .030$.891±.021	$.601 \pm .054$
glass	.840±.075	$.841 \pm .067$	$.819 {\pm} .078$	$.669 \pm .064$.721±.072	$.395 {\pm} .068$
iris	$.960 \pm .036$	$.960 {\pm} .036$	$.932 {\pm} .051$	$.896 \pm .069$	$.876 {\pm} .068$	$.787 \pm .111$
pendigits	.940±.002	$.939 {\pm} .002$	$.924 \pm .002$	$.770 \pm .004$	$.709 {\pm} .005$	$.434 {\pm} .007$
segment	$.953 \pm .006$	$.950 {\pm} .005$	$.914 {\pm} .009$	$.710 \pm .013$	$.624 \pm .020$	$.381 {\pm} .020$
vehicle	.853±.031	$.859 {\pm} .028$	$.836 {\pm} .032$	$.753 {\pm} .032$.767±.037	$.520 {\pm} .050$
vowel	.876±.021	$.851 \pm .020$	$.821 \pm .022$	$.612 \pm .027$	$.536 \pm .034$	$.327 {\pm} .033$
wine	.938±.050	$.947 {\pm} .047$	$.933 {\pm} .054$	$.919 {\pm} .059$	$.921 \pm .062$	$.863 {\pm} .094$
authorship	.933±.016	.936±.015	.932±.017	.927±.017	.923±.015	.886±.022
glass	.840±.075	$.841 \pm .067$	$.838 {\pm} .074$	$.809 \pm .066$	$.815 \pm .075$	$.675 \pm .069$
iris	.960±.036	$.960 {\pm} .036$	$.956 \pm .036$	$.926 \pm .051$	$.932 \pm .048$	$.868 {\pm} .070$
pendigits	$.940 \pm .002$	$.939 {\pm} .002$	$.933 {\pm} .002$	$.918 {\pm} .002$.837±.004	$.794 {\pm} .004$
segment	$.953 \pm .006$	$.950 {\pm} .005$	$.943 {\pm} .005$	$.874 {\pm} .008$	$.844 \pm .010$	$.674 \pm .015$
vehicle	.853±.031	$.859 {\pm} .028$.851±.033	$.838 {\pm} .030$.818±.032	$.765 {\pm} .035$
vowel	.876±.021	$.851 \pm .020$	$.867 \pm .021$	$.785 {\pm} .020$	$.800 \pm .021$	$.588 {\pm} .024$
wine	$.938 \pm .050$	$.947 \pm .047$	$.936 \pm .049$	$.926 \pm .061$	$.930 {\pm} .059$	$.907 {\pm} .066$

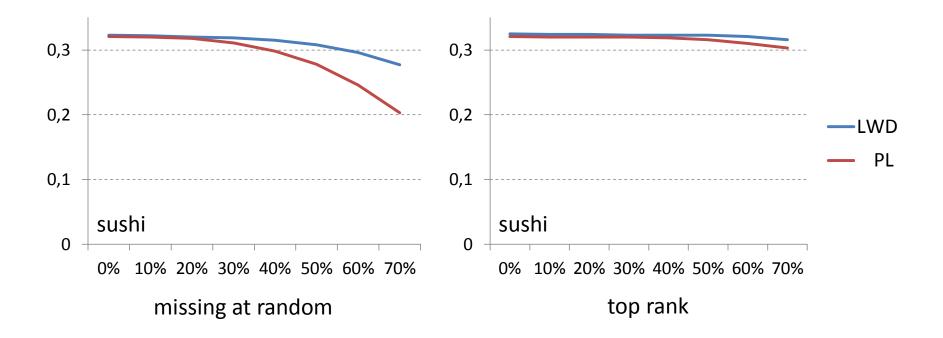
above: labels missing at random bottom: top-rank setting

Kendall's tau on Real-World Data

sushi	0%	10%	20%	30%	40%	50%	60%	70%
LWD	$.323 \pm .012$	$.322 \pm .011$	$.320 \pm .011$	$.319 \pm .010$.315±.011	$.308 \pm .011$.296±.011	$.277 \pm .010$
PL	$.321 \pm .010$	$.320 \pm .010$	$.318 \pm .010$	$.311 \pm .010$	$.298 \pm .011$	$.278 \pm .010$	$.246 \pm .010$	$.203 \pm .012$
LWD	$.325 \pm .012$	$.324 \pm .011$	$.324 \pm .011$	$.323 \pm .011$	$.323 \pm .011$.323±.011	.321±.011	.316±.011
PL	$.321 \pm .010$	$.320 \pm .010$	$.320 \pm .011$	$.320 \pm .011$	$.319 \pm .010$	$.316 \pm .010$	$.310 \pm .010$	$.303 \pm .011$
students	0%	10%	20%	30%	40%	50%	60%	70%
students LWD	0% .641±.051	10% .641±.051	20% .640±.050	30% .640±.051	40% .638±.052	50% .637±.051	60% .633±.054	70% .626±.055
LWD	.641±.051	.641±.051	.640±.050	.640±.051	.638±.052	.637±.051	.633±.054	.626±.055

above: labels missing at random bottom: top-rank setting

Kendall's tau on Real-World Data cont.



- Top rank setting contains more information than missing at random setting.
- LWD is very robust against missing labels.

Summary

- We introduce labelwise decomposition as a new meta-learning technique for label ranking.
- It is realized for the specific case of nearest neighbor estimation.
- This approach is based on *absolute* preference information in the form of ranks.
- The task of risk minimization is formulized as an optimal assignment problem.
- Empircal results indicate a very strong performance in the case of missing label information.