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Instances are mapped to total orders over a fixed set 
of alternatives/labels.  

Label Ranking – An Example 
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Label Ranking: Training Data 

X1 X2 X3 X4 Preferences 

0.34 0 10 174 A ≻ B, C ≻ D 

1.45 0 32 277 B ≻ C 

1.22 1 46 421 B ≻ D, A ≻ D, C ≻ D, A ≻ C 

0.74 1 25 165 C ≻ A, C ≻ D, A ≻ B 

0.95 1 72 273 B ≻ D, A ≻ D 

1.04 0 33 158 D ≻ A, A ≻ B, C ≻ B, A ≻ C 

TRAINING 

Instances are 
associated with 
pairwise 
preferences 
between labels. 

... no demand for full rankings! 
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0.92 1 81 382 ? ? ? ? 

Label Ranking: Prediction 

PREDICTION 

new instance ranking ? 

A B C D 

4 



0.92 1 81 382 4 1 3 2 

Label Ranking: Prediction 

PREDICTION 

new instance 𝜋 (𝑖) = position of i-th label 𝑦𝑖  

A B C D 
A ranking of 
all labels 
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Label Ranking: Prediction 

PREDICTION 
A ranking of 
all labels 

GROUND TRUTH 

S P E A R M A N  

LOSS 

RANK CORRELATION 

LOSS 

𝜌 = 1 −
6 𝐷2(𝜋 , 𝜋 )

𝐾(𝐾2 − 1)
 

𝐷(𝜋 , 𝜋 ) =  𝜋 𝑖 − 𝜋 𝑗
2

𝐾

𝑖=1
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Label Ranking: Prediction 

PREDICTION 
A ranking of 
all labels 

GROUND TRUTH 

K E N D A L L  

LOSS 

RANK CORRELATION 

LOSS 

𝜏 = 1 −
4 𝐷(𝜋 , 𝜋 )

𝐾(𝐾 − 1)
 

𝐷(𝜋 , 𝜋 ) =   𝜋 𝑖 − 𝜋 𝑗 ⋅ 𝜋 𝑖 − 𝜋 𝑗 < 0

1≤𝑖<𝑗≤𝐾
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Label Ranking: A Formal Setting 
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To learn a label ranker ℳ∗ ∶ 𝕏 → 𝕊𝐾 , such that 

ℳ∗ ∈ argmin 𝐷 ℳ 𝑥 , 𝜋  𝑑𝐏(𝑥, 𝜋 )
𝕏×𝕊𝐾

 
ℳ ∈ 𝐌 

 NOTE In the training data, a ranking 𝜋 can be incomplete, 

i.e., 𝑦𝜎 1 ≻ 𝑦𝜎 2 ≻ ⋯ ≻ 𝑦𝜎 𝐽 , where 𝐽 < 𝐾 and 

𝜍 1 …𝜍 𝐽 ⊂ 1…𝐾 . We denote, for example, the ranking 

𝑦2 ≻ 𝑦1 ≻ 𝑦5 as 𝜋 = (2,1,0,0,3). 

 



Pairwise decomposition 

 e.g., [Hüllermeier et al., AI 08] 

 CON  quadratic number of models, higher computational cost 

 CON  non-trivial aggregation step 

 PRO  higher accuracy  

 

Labelwise decomposition 
 e.g., [Dekel et al., NIPS 03], [Cheng et al., ICML 10] and THIS WORK 

 PRO   linear number of models, lower computational cost 

 PRO   trivial or no aggregation step 

 CON  lower accuracy  
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Pairwise and Labelwise Decomposition  



 A meta-learning technique for label ranking directly uses the ranks of 
labels.  

 

 When training data 𝔻 consist of complete training information, we 
learn a model ℳ𝑘: 𝕏 → *1…𝐾+ on the data 
 

𝔻𝑘 =  𝑥𝑛, 𝑟𝑛   𝑥𝑛, 𝜋 𝑛 ∈ 𝔻, 𝑟𝑛 = 𝜋 𝑛 𝑘  . 

 

 Since the ranks have a natural order, it leads to 𝐾 ordinal classification 
problems. 
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Our Method LWD 



 When training data 𝔻 consist of incomplete training information, the 
previous setup is not directly applicable. 

 

 Nevertheless, we can derive some information about the rank 𝜋 𝑘 : 

⋅ IF 𝜋 = 𝐽 and 𝜋 𝑘 = 𝑟 > 0, THEN 𝜋 𝑘 ∈ 𝑟, 𝑟 + 1, … , 𝑟 + 𝐾 − 𝐽 . 

⋅ If 𝜋 𝑘 = 0, we can only derive 𝜋 𝑘 ∈ 1,… , 𝐾 . 

 

 More information under additional assumptions. For example, if 𝜋 is 
known to be the top of 𝜋 , then 
    

 
𝜋 𝑘 = 𝜋 𝑘                           if  𝜋 𝑘 > 0

𝜋 𝑘 ∈  𝐽 + 1,… , 𝐾            if  𝜋 𝑘 = 0
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Our Method LWD cont. 



We make use of a generlized loss function, which compare a point 
predition with a set of possible “true” values: 

𝐿 𝑟 , 𝑅 = min
𝑟 ∈ 𝑅

𝑙(𝑟 , 𝑟) , 

where 𝑅 ∈ *1…𝐾+ is a set of ranks, 𝑟  is the predicted rank, and 
𝑙: 1…𝐾 2 → ℝ is the loss between predicted and true ranks. 
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A Generalized Loss Function 

In the figure on the left:  
• 𝑙 𝑟 , 𝑟 = 𝑟 − 𝑟  
• blue line: 𝑅 = *6+  
• red line: 𝑅 = *4,5,6,7+  

𝑟  

𝐿 



Given a query instance 𝑥, a prediction 𝜋  is obtained by combining the 
(possibly incomplete) rankings 𝜋1, … , 𝜋𝑄 from the 𝑄 nearest neighbors 

of 𝑥 in the training data 𝔻. Considering a loss function 𝐷 on  𝕊𝐾 that is 
labelwise decomposable, the empirical risk of 𝜋  is given by  

 𝐷(𝜋𝑛, 𝜋 )

𝑄

𝑛=1

=   𝐿(𝑅𝑘,𝑛, 𝜋 (𝑘))

𝐾

𝑘=1

𝑄

𝑛=1

 

where 𝑅𝑘,𝑛 is the set of ranks 𝜋𝑛 assigned to label 𝑦𝑘. 

 

This leads to a straightforward procedure. Namely, for each label 𝑦𝑘, we 

select the rank 𝑟 ∈ *1…𝐾+ that minimize  𝐿 𝑅𝑘,𝑛, 𝑟 .𝑄
𝑛=1  

 

But since each rank can only be assigned once, the procedure above is 
not valid. 
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Generalized Nearest Neighbor Estimation 



The minimization of  𝐷(𝜋𝑛, 𝜋 )
𝑄
𝑛=1  requires the solution of an optimal 

assignment problem: 

• Label 𝑦𝑘  must be uniquely assigned to rank 𝑟 = 𝜋 𝑘 ∈ *1…𝐾+; 

• Assigning 𝑦𝑘  to rank 𝑟 has a cost of 𝐿𝑘(𝑟); 

• The goal is to minimize the sum of all assignment costs. 

 

This optimal assignment problem can be solved with the Hungarian 
algorithm. Its complexity for solving the problem above is 𝒪(𝐾3). 

 

By solving the optimal assignment problem, we find the prediction 𝜋  
that minimizes  𝐿𝑘(𝜋).𝐾

𝑘=1  
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Generalized Nearest Neighbor Estimation cont. 



 We empirically test our LWD framework with L1 loss, and compare it 
to another instance-based label ranking algorithm PL, which is based 
on the Plackett-Luce model for rankings. [Cheng et al., ICML 10] 
 

 Both synthetic and real-world data are used. 
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Experiments 

data set # instances # attributes # labels 

authorship 841 70 4 

glass 214 9 6 

iris 150 4 3 

pendigits 10992 16 10 

segment 2310 18 7 

vheicle 846 18 4 

vowel 528 10 11 

wine 178 13 3 

sushi 5000 11 10 

students 404 126 5 
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Kendall’s tau on Synthetic Data 

above: labels missing at random 
bottom: top-rank setting 
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Kendall’s tau on Real-World Data 

above: labels missing at random 
bottom: top-rank setting 
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Kendall’s tau on Real-World Data cont. 
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missing at random top rank 

 Top rank setting contains more information than missing at 
random setting. 

 LWD is very robust against missing labels.  

sushi sushi 



 We introduce labelwise decomposition as a new meta-learning 
technique for label ranking.  
 

 It is realized for the specific case of nearest neighbor estimation. 
 

 This approach is based on absolute preference informaiton in the 
form of ranks. 
 

 The task of risk minimization is formulized as an optimal assignment 
problem. 
 

 Empircal results indicate a very strong performance in the case of 
missing label information. 
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Summary 


