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Multilabel Classification
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What is Multilabel Classification?

= Conventional classification

» |nstances are associated with a single label A from as set £
of finite labels

= if |£] =2, binary classification;
= if |£| > 2, multi-class classification.

= Multilabel classification
= |[nstances are associated with a set of labels L C L.



Existing Methods

= Quite a number of methods for multilabel classification have
been proposed, most of them being model-based approaches
(training a global model for prediction).

= QOur work is especially motivated by MLKNN:

Zhang & Zhou. ML-kNN: A lazy learning approach to multi-label learning.
Pattern Recognition, 2007, 40(7): 2038-2048.

In a number of practical problems, MLKNN shows very strong
performance and even outperforms RankSVM and
AdaBoost.MH.

= Still, many methods ignore the correlation between labels.
A paper with label CS is more likely having label Math, than Law.



Our Contributions

A new multilabel learning method,

* which is based on a formalization of instance-based

classification as logistic regression (combination of model-
based and instance-based learning),

e takes the correlation between labels into account and
represents it in an easily interpretable way.
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IBL as Logistic Regression

Key idea:

Consider the labels of neighbors as “extra features” of an instance

nearest _
neighbors

test instance

age weight height sex w.child D
26 62 1.83 male no 1
16 45 1.65 female no 0
28 85 1.90 male yes 1
27 50 1.63 male yes ?

1

Does he like basketball?
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IBL as Logistic Regression

Extended representation:

age weight  height sex w.child #D D
26 62 1.83 male no 1/3 1
16 45 1.65 female no 0 0
28 85 1.90 male yes 2/3 1
27 50 1.63 male yes 2/3 ?

|

Extra feature: 2 among 3
neighbors like basketball
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IBL as Logistic Regression (binary case)

Consider query instance X, distance 9; d A(xg,X;),
posterior probability dt P(yo =+1|y;) :

T Pilyo=+1)  po ~_Po

-7 Pyilyo=-1) 1-po P 1 —po

iy
og (17 ) =log(p) + log(pv)  log(1 - po)

~\
wo

¢ a
For example, we can define p = p(d) < exp (’yi : —) .

)
AP 1
o — —|—OO
Now consider the whole neighborhood of Xo: 50 < yi=+1—p1
=-1-p]
o Yi
log = wo + & Z — =wy+ - w+xo%
1 — 0 (52
x; €N (x0)
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IBL as Logistic Regression (binary case)

log( 0 ):w0+a-w+(x0):wo+a Z %

1 —
ﬂ-O X3 GN(X()) ¢
From distance to similarity

= wo T« Z K(X0,Xi) - Ys
x; €N (x0)

The standard KNN classifier is recovered as a special case:

Set wg =0, and

o 1 if X; € Nk (Xo)
(%0, %) = { 0 otherwise
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NN =

IBL as Logistic Regression

Same idea for multilabel case:

Consider the labels of neighbors as “extra features” of an instance

test inst.

age weight height sex D _
26 62 1.83 male no 1 0 1
16 45 1.65 female no 0 1 0
28 85 1.90 male yes 1 0 1
27 50 1.63 male yes ?

11

Does he like basketball?
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IBL as Logistic Regression

Extended representation:

age weight height sex w.child # D # H5H .le\ m
26 62 1.83 male no 1/3 0 1 1 0 1
16 45 1.65 female no 0 1 1/3 1 0
28 85 1.90 male yes 2/3 0 1 0 0
27 50 1.63 male yes 2/3 1/3 1/3 ? ?

Extra feature: 1 among 3
neighbors like table tennis
10/16



IBL as Logistic Regression (multilabel case)

We solve one logistic regression problem for each label!

Example:

T
log (—: = :) = wo + e, Wi (X0) +ag - wig(Xo) + ag - wig (X0)

|

To what extent does the presence of
label basektball in the neighborhood

increase the probability that football is
relevant for the query?
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IBL as Logistic Regression (multilabel case)

Multilabel prediction rule

L = {)\Eﬁ‘ 1og(1f0§j())\)) >0}

Ranking rule

A=\ == log (125;\(1)) >1og( WO(Aj). )
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Experiments

dataset domain #inst. Hattr. #labels card.
emotions music 593 72 6 1,87
image vision 2000 135 5 1,24
genbase biology 662 1186(n) 27 1,25
mediamill multimedia 5000 120 101 4,27
reuters text 7119 243 7 1,24
scene vision 2407 294 6 1,07
yeast biology 2417 103 14 4,24

Tested methods:

e MLKNN
e Binary relevance learning (BR) with logistic regression, C4.5 and KNN
e Label powerset (LP) with C4.5

e Our method: IBLR-ML



Evaluation metrics

1
Hamming loss = E|h(X)ALx|
1 if argmaxy e, f(x,A) € Ly
One error - { 0 otherwise
coverage = )1:\1;.%5( rank ¢(x,\) — 1

A (6 A) < F6 ), (A X) € Ly X L}
| Lc | Lx|

rank loss =

daverage preCISIOn , ,
Z {\" |rank(x, \") < rank;(x,\), N € Ly}

Ly N rank s (x, \)



critical distance

Hamming 10ss One error
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Contributions of Our Work

Novel approach to IBL, applicable to classification in general and
multilabel classification in particular.

Key idea: Consider label information in the neighborhood of a
query as “extra features” of that query.

Balance between global and local inference automatically
optimized via fitting a logistic regression function.

Interdependencies between labels estimated by regression
coefficients.

Extension: Logistic regression combining “normal features” with
“extra features”.



IBLR-ML is available in the MULAN Java library,

maintained by the
Machine Learning & Knowledge Discovery Group,
Aristotle University of Thessaloniki.

Check www.chengweiwei.com for more info.

Thanks!
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