Combining Instance-Based Learning and Logistic Regression for Multilabel Classification

Weiwei Cheng & Eyke Hüllermeier

Knowledge Engineering & Bioinformatics Lab Department of Mathematics and Computer Science University of Marburg, Germany

Combining Instance-Based Learning

and Logistic Pogression for

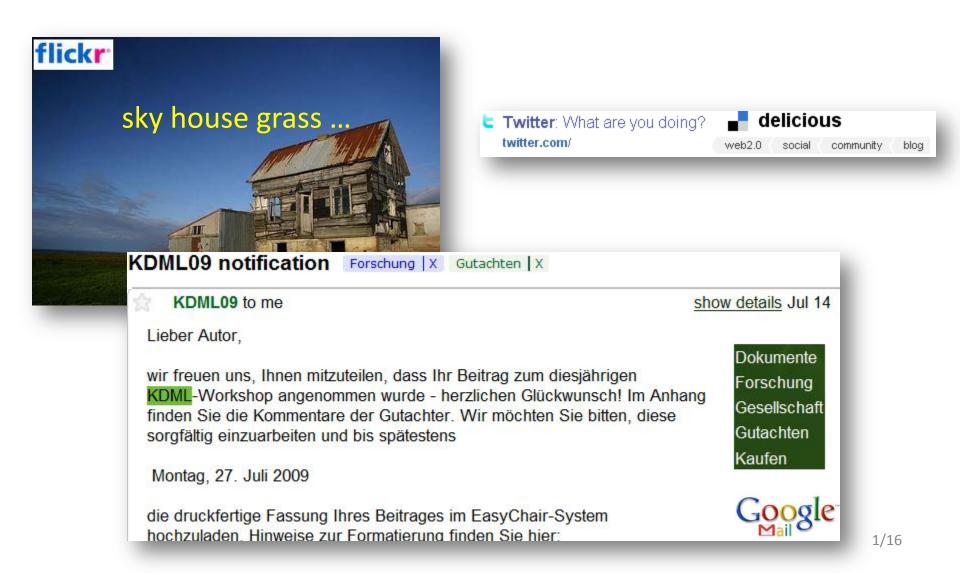
cation

Multila

Weiwei Cheng & Eyke Hüllermeier

Knowledge Engineering & Bioinformatics Lab Department of Mathematics and Computer Science University of Marburg, Germany

Multilabel Classification



What is Multilabel Classification?

- Conventional classification
 - Instances are associated with a single label \(\lambda\) from as set \(\mathcal{L}\) of finite labels
 - if $|\mathcal{L}| = 2$, binary classification;
 - if $|\mathcal{L}| > 2$, multi-class classification.
- Multilabel classification
 - Instances are associated with a set of labels $L \subseteq \mathcal{L}$.

Existing Methods

- Quite a number of methods for multilabel classification have been proposed, most of them being model-based approaches (training a global model for prediction).
- Our work is especially motivated by MLKNN:
 Zhang & Zhou. ML-kNN: A lazy learning approach to multi-label learning.

Pattern Recognition, 2007, 40(7): 2038-2048.

In a number of practical problems, MLKNN shows very strong performance and even outperforms RankSVM and AdaBoost.MH.

Still, many methods ignore the correlation between labels.
 A paper with label CS is more likely having label Math, than Law.

Our Contributions

- A new multilabel learning method,
- which is based on a formalization of instance-based classification as logistic regression (combination of modelbased and instance-based learning),
- takes the correlation between labels into account and represents it in an easily interpretable way.

Key idea:

Consider the labels of neighbors as "extra features" of an instance

	age	weight	height	sex	w.child	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$
nearest neighbors	26	62	1.83	male	no	1
	16	45	1.65	female	no	0
	28	85	1.90	male	yes	1
				•••	•••	
test instance	27	50	1.63	male	yes	?
						1

Does he like basketball?

Extended representation:

age	weight	height	sex	w.child	#	
26	62	1.83	male	no	1/3	1
16	45	1.65	female	no	0	0
28	85	1.90	male	yes	2/3	1

27 50 1.63 male yes 2/3 ?

neighbors like basketball

IBL as Logistic Regression (binary case)

Consider query instance \mathbf{x}_0 , distance $\delta_i \stackrel{\text{df}}{=} \Delta(\mathbf{x}_0, \mathbf{x}_i)$, posterior probability $\pi_0 \stackrel{\text{df}}{=} \mathbf{P}(y_0 = +1 \mid y_i)$:

$$\frac{\pi_0}{1-\pi_0} = \frac{\mathbf{P}(y_i \mid y_0 = +1)}{\mathbf{P}(y_i \mid y_0 = -1)} \cdot \frac{p_0}{1-p_0} = \rho \cdot \frac{p_0}{1-p_0}$$

$$\log\left(\frac{\pi_0}{1-\pi_0}\right) = \log(\rho) + \underbrace{\log(p_0) - \log(1-p_0)}_{\omega_0}$$

For example, we can define $\rho = \rho(\delta) \stackrel{\text{df}}{=} \exp\left(y_i \cdot \frac{\alpha}{\delta}\right)$.

Now consider the whole neighborhood of \mathbf{x}_0 :

$$\log\left(\frac{\pi_0}{1-\pi_0}\right) = \omega_0 + \alpha \sum_{\mathbf{x}_i \in \mathcal{N}(\mathbf{x}_0)} \frac{y_i}{\delta_i} = \omega_0 + \alpha \cdot \omega_+(\mathbf{x}_0)$$
bias term (prior probability) evidence for positive class
7/16

IBL as Logistic Regression (binary case)

$$\log\left(\frac{\pi_0}{1-\pi_0}\right) = \omega_0 + \alpha \cdot \omega_+(\mathbf{x}_0) = \omega_0 + \alpha \sum_{\mathbf{x}_i \in \mathcal{N}(\mathbf{x}_0)} \frac{y_i}{\delta_i}$$

From *distance* to *similarity*

$$= \omega_0 + \alpha \sum_{\mathbf{x}_i \in \mathcal{N}(\mathbf{x}_0)} \kappa(\mathbf{x}_0, \mathbf{x}_i) \cdot y_i$$

The standard KNN classifier is recovered as a special case:

• Set
$$\omega_0 = 0$$
 , and

•
$$\kappa(\mathbf{x}_0, \mathbf{x}_i) = \begin{cases} 1 & \text{if } \mathbf{x}_i \in \mathcal{N}_k(\mathbf{x}_0) \\ 0 & \text{otherwise} \end{cases}$$

Same idea for multilabel case:

Consider the labels of neighbors as "extra features" of an instance

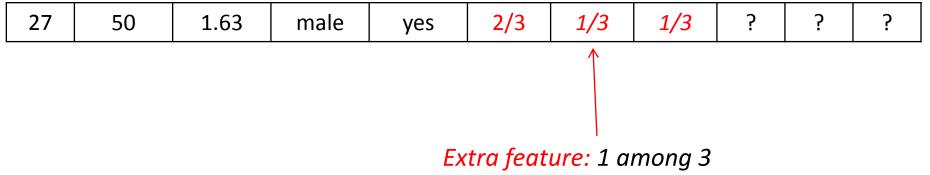
	age	weight	height	sex	w.child			
٢	26	62	1.83	male	no	1	0	1
NN -	16	45	1.65	female	no	0	1	0
L	28	85	1.90	male	yes	1	0	1
				•••	•••			
test inst.	27	50	1.63	male	yes	?	?	?
							1	
		Does he like basketball?						

Extended representation:

age	weight	height	sex	w.child	#	#	# 💽		S C	
26	62	1.83	male	no	1/3	0	1	1	0	1
16	45	1.65	female	no	0	1	1/3	0	1	0
28	85	1.90	male	yes	2/3	0	1	1	0	0

...

...



neighbors like table tennis

IBL as Logistic Regression (multilabel case)

We solve one logistic regression problem for each label!

Example:

$$\log\left(\bigcup_{i=1}^{n}\right) = \omega_{0} + \alpha_{\odot} \cdot \omega_{+\odot}(\mathbf{x}_{0}) + \alpha_{\odot} \cdot \omega_{+\odot}(\mathbf{x}_{0}) + \alpha_{\odot} \cdot \omega_{+\odot}(\mathbf{x}_{0})$$

$$\uparrow$$
To what extent does the presence of label basektball in the neighborhood increase the probability that football is relevant for the query?

IBL as Logistic Regression (multilabel case)

Multilabel prediction rule

$$L = \left\{ \lambda \in \mathcal{L} \mid \log\left(\frac{\pi_0(\lambda)}{1 - \pi_0(\lambda)}\right) > 0 \right\}$$

Ranking rule

$$\lambda_i \succ \lambda_j \iff \log\left(\frac{\pi_0(\lambda_i)}{1 - \pi_0(\lambda_i)}\right) > \log\left(\frac{\pi_0(\lambda_j)}{1 - \pi_0(\lambda_j)}\right)$$

Experiments

dataset	domain	#inst.	#attr.	#labels	card.
emotions	music	593	72	6	1,87
image	vision	2000	135	5	1,24
genbase	biology	662	1186 <mark>(n)</mark>	27	1,25
mediamill	multimedia	5000	120	101	4,27
reuters	text	7119	243	7	1,24
scene	vision	2407	294	6	1,07
yeast	biology	2417	103	14	4,24

Tested methods:

- MLKNN
- Binary relevance learning (BR) with logistic regression, C4.5 and KNN
- Label powerset (LP) with C4.5
- Our method: IBLR-ML

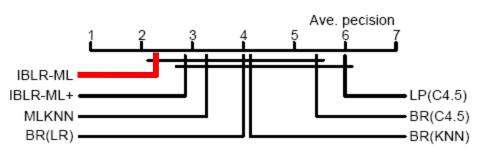
Evaluation metrics

• average precision

$$= \frac{1}{|L_{\mathbf{x}}|} \sum_{\lambda \in L_{\mathbf{x}}} \frac{|\{\lambda' | \operatorname{rank}_{f}(\mathbf{x}, \lambda') \leq \operatorname{rank}_{f}(\mathbf{x}, \lambda), \lambda' \in L_{\mathbf{x}}\}}{\operatorname{rank}_{f}(\mathbf{x}, \lambda)}$$
14/16

critical distance Hamming loss One error 6 6 IBLR-ML IBLR-ML LP(C4.5) LP(C4.5) BR(C4.5) IBLR-ML+ MLKNN · BR(LR) BR(KNN) -IBLR-ML+ -MLKNN --BR(C4.5) BR(LR) BR(KNN) Rank loss Coverage 6 IBLR-ML IBLR-ML LP(C4.5) - LP(C4.5) IBLR-ML+ IBLR-ML+ BR(C4.5) BR(C4.5) BR(LR) -MLKNN -

BR(LR)



MLKNN -BR(KNN) -

Nemenyi test with *p*=0.05

15/16

BR(KNN)

Contributions of Our Work

- Novel approach to IBL, applicable to classification in general and multilabel classification in particular.
- Key idea: Consider label information in the neighborhood of a query as "extra features" of that query.
- Balance between global and local inference automatically optimized via fitting a logistic regression function.
- Interdependencies between labels estimated by regression coefficients.
- Extension: Logistic regression combining "normal features" with "extra features".

IBLR-ML is available in the MULAN Java library, maintained by the Machine Learning & Knowledge Discovery Group, Aristotle University of Thessaloniki.

Check <u>www.chengweiwei.com</u> for more info.

Thanks!

