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Multi-Label Classification

• Given a vector x ∈ X of features, the goal is to predict
a set of relevant labels Lx ⊆ L.

Detected objects: sky, cloud, tree, grass.
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Graded Multi-Label Classification
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Graded Multi-Label Classification

Shooting

Racing

Fighting

Role-playing
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Graded Multi-Label Classification

Shooting

FFF completely

Racing

FFF almost

Fighting

FFF somewhat

Role-playing

FFF not at all
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Graded Multi-Label Classification

• Instance x ∈ X can belong to each class λ ∈ L to a certain
degree −→ idea of graded class membership in the spirit of
fuzzy set theory.

• Set Lx of relevant labels is now a fuzzy subset of L with
graded membership degrees in M = [0, 1] (instead of {0, 1}).

• A graded multilabel classifier is a mapping X → F(L), where
F(L) is a class of fuzzy subsets of L.

• Often, an ordinal scale of membership degrees is convenient,
i.e. M = {m0,m1, . . . ,mk} with

0 = m0 < m1 < . . . < mk = 1
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Collaborative Filtering

• Connection between GMLC and Collaborative Filtering.

FFF FFF
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Collaborative Filtering

• For a given incomplete matrix Y of ordinal rates, the goal is
to find matrix U and M,

Ŷ = UM,

that generalizes well over missing elements of Y with respect
to a specific loss function L(Y, Ŷ) to be minimized.

• U can be treated as features, and M as models.

• GMLC: U and Y is given; the goal is to find M that for new
U′ generalizes well to predict Y′.
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GMLC – Reduction

• Reduction: Transform complex learning problems into
simpler, core problems.

• Assumption: Good performance on the core problems should
imply good performance on the complex problem.

• Reduction of GMLC:

GMLC −→ Ordinal Classification

GMLC −→ Multi-Label Classification
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Vertical vs. Horizontal Reduction

• Vertical: Lx can be represented vertically, e.g., Lx(λ2)=m1.

• Horizontal: Lx can be represented horizontally in terms of its
level-cuts, e.g., [Lx]m2 = {λ1, λ4, λ5}.
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Vertical Reduction

• Train one ordinal classifier,

hi : X →M, x 7→ Lx(λi) ∈M,

for each label λi.

• hi is solving an ordinal classification problem.

• Overall, we are solving |L| such problems.

• The simplest approach is graded relevance.

• Question: Can we solve the problem for each label
independently?
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Horizontal Reduction

• Train one multi-label classifier,

h(α) : X → 2L, x 7→ [Lx]α ∈ 2L,

for each level α ∈ {m1,m2, . . . ,mk}.
• Overall, we are solving k standard multilabel classification

problems.

• Question: Can we solve the problem for each α-cut
independently?
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Horizontal Reduction

• To reconstruct the fuzzy subset from the horizontal
reduction, one has to perform:

Lx(λ) = max{mi ∈M |λ ∈ [Lx]mi}.

• This implies that the predictions should be consistent in the
sense that

h(mj)(x) ≤ h(mj−1)(x)

• Satisfying this monotonicity property is a non-trivial
problem.
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Reduction

• Vertical reduction leads to ordinal classification.

• Horizontal reduction leads to multi-label classification.

• Both, ordinal classification and multi-label classification, can
be reduced to binary classification.

• GMLC can be reduced to binary classification.
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Loss Functions

• What is a desired loss function for GMLC?

• GMLC loss functions in the reduction framework:

• Ordinal classification loss functions.

• Multilabel classification loss functions.
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Loss Functions for Ordinal classification

• Standard 0/1 loss:

`0/1(Lx(λ),h(x)(λ)) = JLx(λ) 6= h(x)(λ)K

• Absolute error:

`AE(Lx(λ),h(x)(λ)) = |Lx(λ)− h(x)(λ))|

• Rank loss (C-index):

`rank(Lx(λ), Lx′(λ),h(x)(λ),h(x′)(λ)) =
(Lx(λ)− Lx′(λ))× (h(x′)(λ)− h(x)(λ))
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Loss Functions for Multi-Label Classification

• Hamming loss:

LH(Lx,h(x)) =
1
|L|

|L|∑
i=1

JLx(λi) 6= h(x)(λi)K

• Rank loss:

Lrank(Lx,h(x)) =
∑
i<j

(Lx(λi)−Lx(λj))×(h(x)(λj)−h(x)(λi))

• Jaccard distance:

LJ(Lx,h(x)) =
h(x) ∩ Lx

h(x) ∪ Lx
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Loss Functions for Graded Multi-Label Classification

• Horizontal and vertical decomposition of a loss function can
be equivalent:

EHAE(Lx,h(x)) =
1
k

k∑
i=1

LH([Lx]mi ,h
(mi)(x))

=
1
|L|

|L|∑
i=1

`AE(Lx(λ),h(x)(λ))
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Loss Functions for Graded Multi-Label Classification

• In general, however, there does not exist an aggregation
operator A such that:

A
(
{` (h(x)(λi), Lx(λi))}|L|i=1

)
=A

({
L
(
h(mi)(x), [Lx]mi

)}k
i=1

)
.

• Conclusion: A choice of the loss function may imply the type
of reduction.
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Desired Loss Function?

• The risk minimizer of EHAE(Lx,h(x)) is a marginal
median:

h∗(x) = arg min
h

EY |xEHAE(Lx,h(x))

= (Med(Lx(λ1)),Med(Lx(λ2)), . . . ,Med(Lx(λ|L|)))

• Question: What would we like to estimate in GMLC?
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Experiment

Showing the usefulness of the graded setting:

• We provide empirical evidence showing that labeling on
graded scales offers useful extra information (binary learning
VS. graded learning)

• We claim that training a learner on graded data can be useful
even if only a binary prediction is actually requested.

graded learning

F F F binary test data

binary learning YES/NO

YES/NO
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Experiment

BeLa-E data set (Abele & Stief, 2004):

• Degrees of importance of the future job’s different properties
provided by grad students, e.g., reputation, job security,
income, etc.

• Degrees are given on an ordinal scale from 5 to 1.

• 1930 instances, 50 attributes (48 job properties, 2 for sex and
age).

Binarization (mimicking a person forced to decide):

1 2 3 4 5
↓ ↓ ↓

non-relevant flip a coin relevant
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Experiment

Design of the experiment:

• A subset of features is randomly chosen as labels.

• Binary learning: the whole data is binarized.

• Graded learning: only predictions and test data are binarized.

• 10-fold cross validation with 50 randomly generated problems.
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Experiment

Table: Performance (mean and standard error) in the case of m = 5
labels (above) and m = 10 labels (below).

BR-LR BR-10NN
binary graded binary graded

Hamming/AE loss 0.210±0.029 0.186±0.031 0.220±0.051 0.213±0.052
rank loss 0.146±0.041 0.141±0.038 0.328±0.115 0.310±0.104
C-index 0.171±0.045 0.163±0.049 0.381±0.089 0.361±0.080

Hamming/AE loss 0.207±0.017 0.187±0.018 0.230±0.018 0.217±0.018
rank loss 0.145±0.025 0.136±0.019 0.225±0.040 0.154±0.020
C-index 0.175±0.011 0.154±0.016 0.237±0.011 0.171±0.016

• Graded training shows significant advantage over binary
training.
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Take-Away Message

• We proposed graded multilabel classification (GMLC) as an
extension of conventional multilabel classification, since label
relevance is often a matter of degree.

• We proposed two meta-techniques for GMLC, vertical and
horizontal reduction.

• We proposed extensions of MLC loss functions and studied
their usability with the two reduction schemes.

• We provided empirical evidence for the usefulness of learning
from graded multilabel data.
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