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 Incorporating background knowledge, such as monotonicity,   
into the learning process is an important aspect in machine 
learning research.  
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 For example, the higher the tobacco 
consumption, the more likely a 
patient suffers a lung cancer. 
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For a linear model            : 

 Monotonicity is easy to ensure (signs of coefficients); 

 Easy to interpret. The direction and strength of influence of each predictor 
are reflected by the corresponding coefficient; 

 But lack of flexibility.  

For a nonlinear model, e.g.,   

 More flexible; 

 But difficult to find simple global constraints to ensure monotonicity, as
                  which depends on all other attributes; 

 Harder to interpret. 



Outline of the Talk 

 Contribution: 

 We propose the use of the Choquet integral as a flexible and expressive 

aggregation operator, which is monotone and provides important insights 

into the data. 

 As an example, we generalize logistic regression using the Choquet 

integral, leading to choquistic regression. 

 

 Outline: 

(1) Introduction to non-additive measures and Choquet integral 

(2) Choquistic regression as a generalization of logistic regression 

(3) First experimental results 
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Additive & Non-Additive Measures 
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C = {speaking Chinese, coding in Java, coding in C} 

 μ ({speaking Chinese}) = 0 
μ ({coding in Java}) = 0 
μ ({coding in C}) = 0 

 μ({speaking Chinese, coding in Java})  = 1 
μ({speaking Chinese, coding in C})  = 0.7 
μ(C)  = 1 

 μ ({speaking Chinese}) = 0.2 
μ ({coding in Java}) = 0.4 
μ ({coding in C}) = 0.4 

 μ({speaking Chinese, coding in Java})  = 0.6 
μ({speaking Chinese, coding in C})  = 0.6 
μ(C)  = 1 



For an additive measure: 

 There is no possibility to model interaction between criteria. 

   

 

Importance of Criteria & Interaction 
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For a non-additive measure: 

 Importance of criteria can be measured by the Shapley index: 

 

 

 Interactions between criteria can be measured by the interaction index: 



Discrete Choquet Integral: A Brief Intro 
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From Logistic to Choquistic Regression 
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Logistic 

Choquistic 

Choquet integral of 
(normalized) attribute values 

 It can be shown that, by choosing the parameters in a proper way, logistic 
regression is indeed a special case of choquistic regression.  

 

 

 



Choquistic Regression: Interpretation 
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Thresholding: 

utility 
threshold 

precision of 
the model 

decision function (probability 
of choosing positive class), 

steepness determined by 
precision parameter γ = 0 

γ = ∞ 



Choquistic Regression: Interpretation 
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 The non-additive measure ¹ specifies the importance of subsets of 
predictor variables, i.e., their influence on the probability of the 
positive class. 

 Due to the non-additivity of the measure, it becomes possible to 
model interaction effects, thereby expressing complementarity and 
redundancy of variables. 
   

 For example, what is the joint effect of {smoking,age} on the 
 probability of cancer, as opposed to the sum of their individual 
 influences?  

 Formally, measures like Shapley index and interaction index can be 
used, respectively, to quantify the importance of individual and the 
interaction between different variables. 

 Monotonicity is obviously ensured by the Choquet integral.  



Choquistic Regression: Parameter Estimation 

13/17 

 We need to identify the following model parameters: 

 the non-additive measure ¹ 

 The utility threshold ¯ 

 The precision parameter ° 

 The non-additive measure, in its most general form, has a number of 
parameters which is exponential in the number of attributes. 
 critical from a computational complexity point of view 

 We follow a maximum likelihood (ML) approach; the Choquet integral 
is expressed in terms of its Möbius transform: 



Choquistic Regression: Parameter Estimation 
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 solution with sequential quadratic programming 

normalization and 
monotonicity of the 

non-additive measure 

conditions on utility 
threshold and precision 

 ML estimation leads to a constrained optimization problem:  



Experimental Evaluation 

nonlinear classifier 

20% 

80% 

50% 

monotone classifier 



Importance & Interactions (Car Evaluation) 
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interaction index 

Shapley index 



Conclusions & Outlook 

 We advocate the use of the discrete Choquet integral as an aggregation 
operator in machine learning, especially in learning monotone models. 

 

 As a concrete application, we have proposed choquistic regression, a 
generalization of logistic regression. 

 

 First experimental results confirm advantages of the Choquet integral. 

 

 Ongoing work: Restriction to k-additive measures, for a properly chosen k 

 full flexibility is normally not needed and may even lead to overfitting the data 

 advantages from a computational point of view 

 key question: how to find a suitable k in an efficient way? 
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