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Monotonicity ‘

Incorporating background knowledge, such as monotonicity,
into the learning process is an important aspect in machine
learning research.

Lung cancer For example, the higher the tobacco
consumption, the more likely a
patient suffers a lung cancer.
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Monotonicity ~‘—

For alinearmodel Y = > 1" o, X; + € :
= Monotonicity is easy to ensure (signs of coefficients);

= Easy to interpret. The direction and strength of influence of each predictor
are reflected by the corresponding coefficient;

= But lack of flexibility.

For a nonlinear model, e.g., Y => ", o, X; + D i<icij<m QiiXiXj + €
= More flexible;

= But difficult to find simple global constraints to ensure monotonicity, as
Y /0X; = a; + Z#i a;; X j, which depends on all other attributes;

= Harder to interpret.



Outline of the Talk +

Contribution:

=  We propose the use of the Choquet integral as a flexible and expressive
aggregation operator, which is monotone and provides important insights
into the data.

= As an example, we generalize logistic regression using the Choquet
integral, leading to choquistic regression.

Outline:
(1) Introduction to non-additive measures and Choquet integral
(2) Choquistic regression as a generalization of logistic regression

(3) First experimental results



Additive & Non-Additive Measures

Let C = {c1,...,Cm} be a finite set and p(-) a measure 2¢ — [0,1]. For
each A C C, we interpret u(A) as the weight of the set A.

C' = {speaking Chinese, coding in Java, coding in C}

For an additive measure:
(AU B) = pu(A) + u(B), VA, B C C such that AN B = .

u ({speaking Chinese}) = 0.2 t({speaking Chinese, coding in Java}) = 0.6
t ({coding in Java}) = 0.4 u({speaking Chinese, coding in C}) =0.6
t ({coding in C}) = 0.4 u(C) =1

A (non-additive) measure is normalized and monotone:
p(@) =0, p(C) =1, and p(A) <u(B) VACBCC.

U ({speaking Chinese}) =0 u({speaking Chinese, coding in Java}) =1
U ({coding in Java}) =0 u({speaking Chinese, coding in C}) =0.7
t ({codinginC}) =0 u(C) =1
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Importance of Criteria & Interaction ~‘—

For an additive measure:
= There is no possibility to model interaction between criteria.

= u({c;}) is a natural quantification of the importance of ¢;.

For a non-additive measure:

" |mportance of criteria can be measured by the Shapley index:

o)=Y (AU )~ 4)
i} m(m— )

" |nteractions between criteria can be measured by the interaction index:
o p(AU{ci, ¢}) — p(AU {ei}) — (AU {c;}) + pu(4)
L= Y _
ACC\{cic} (m—1) (m - 2)
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Discrete Choquet Integral: A Brief Intro KE

4 A
e e | st
flen) - f(c1) :
f(e) |8 f(c2) | ] : p({c, es})

I I I i u({ci,c2,c3})
f(ca) f(cs) :
I I l I I pu({cr,c2,c3,c4})
> '
€1 C2 €3 C4 C1 C2 C3 (4

4

Culf) =D _wi- fle) =Y n({e) - fler)  Culf) = ZM(A@)) ' (f(cw) - f(C(v:—l)))

i=1 i=1
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Discrete Choquet Integral: A Brief Intro

4 A
f(C3) f(Cg) I 1 a(fes)
flen) f(c1) :
fle) 8 f(c2) i L : p{cr, cst)

I I I : /L({Cl, 62763})
f(C4) f(C4) :
I I l I : M({Cl, C2, C3,C4})
> 'S
C1 C2 €3 (4 C1 Cy C3 C4

The discrete Choquet integral of f : ' — R, with respect to u is defined as

follows:
m

Cu(f) =) (flewy) — fleaon)) - 1(Ag) |

i=1
where (-) is a permutation of {1,...,m} such that 0 < f(cqy)) < f(c)) <... <
flemmy), and Ay = {c@iy, -5 com) }-

In our case, f(c;) = x; is the value of the i-th variable. 9/17



From Logistic to Choquistic Regression

P(y:1|m):(1—|—exp( r—’wo—’wTaz | )>_1
P(y:um):(1+exp( — 7 (Culx) — B) ))_1

Choquet integral of
(normalized) attribute values

= |t can be shown that, by choosing the parameters in a proper way, logistic
regression is indeed a special case of choquistic regression.
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Choquistic Regression: Interpretation ‘

Interpretation of choquistic regression as a two-stage process:

(1) a (latent) utility degree u = C,(x) € |0, 1] is determined by the
Choquet integral
(2) a discrete choice is made by thresholding u at

1 T T T
Thresholding: decision function (probability

0.8 of choosing positive class),
steepness determined by
1 K8 precision parameter

T dl+exp(—(Culm) =)

b e

precision of utility % 02 04 0.6 08 1
the model threshold utility u estimated by the Choquet integral

P(y=1)
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Choquistic Regression: Interpretation +

"= The non-additive measure . specifies the importance of subsets of
predictor variables, i.e., their influence on the probability of the
positive class.

= Due to the non-additivity of the measure, it becomes possible to
model interaction effects, thereby expressing complementarity and
redundancy of variables.

For example, what is the joint effect of {smoking,age} on the
probability of cancer, as opposed to the sum of their individual
influences?

=  Formally, measures like Shapley index and interaction index can be
used, respectively, to quantify the importance of individual and the
interaction between different variables.

=  Monotonicity is obviously ensured by the Choquet integral.

12/17



Choquistic Regression: Parameter Estimation +

= We need to identify the following model parameters:
— the non-additive measure p
— The utility threshold 3

— The precision parameter y

= The non-additive measure, in its most general form, has a number of
parameters which is exponential in the number of attributes.
- critical from a computational complexity point of view

= We follow a maximum likelihood (ML) approach; the Choquet integral
is expressed in terms of its Mobius transform:

Cu(f) = > m(T) x min f(c;) .

c;, €T
TCC



Choquistic Regression: Parameter Estimation +

= ML estimation leads to a constrained optimization problem:

min 7 > (1= ) Cml@?) = )+ log (14 exp(—7 (Cm(2) — 5)))

m,y,5 P

subject to:

0 < 6 < 1 conditions on utility
threshold and precision

0<7vy
Z m(T) =1

normali.za.\tion and TCC

monotonicity of the = -
non-additive measure Z m(B U {Cz}) > 0 VA C 07 \V/CZ' c(C
BCA\{c:}

- solution with sequential quadratic programming
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Experimental Evaluation

dataset

CREnm

LR N

KLR-ply B

KLR-rbf W

MORE B

DBS
CPU
BCC
MPG
20% ESL
MMG
ERA
LEV
CEV

2226+.0380 (4)
0457+.0338 (2)
:2939+.0100 (4)
0688.0098 (2)
0764+.0291 (3)
1816+.0140 (3)
2997+.0123 (2)
15274.0138 (1)
0441+.0128 (1)

1803+£.0336 (1)
.0430+.0318 (1)
2761+.0265 (1)
.0664+.0162 (1)
0747+.0243 (1)
1752+.0106 (2)
.2922+.0096 (1)
1644+.0106 (4)
.1689+.0066 (5)

2067L.0447 (3)
0586+.0203 (3)
:3102+.0386 (5)
0729+.0116 (4)
07524.0117 (2)
:19704.0095 (4)
:3011+.0132 (3)
1570+.0116 (2)
0571+.0078 (3)

1922%.0501 (2)
0674+.0276 (4)
2859+.0329 (3)
.0705+.0122 (3)
0794+.0134 (4)
2011+.0123 (5)
:3250+.0172 (5)
.15774.0124 (3)
052240085 (2)

2541£.0142 (5)
.1033+.0681 (5)
2781+.0219 (2)
.0800+.0198 (5)
.1035+.0332 (5)
.1670+.0120 (1)
:3040+.0192 (4)
.1878+.0242 (5)
.0690+.0408 (4)

avg. rank

2.4

1.9

3.3

3.4

]

DBS
CPU
BCC
MPG
50% ESL
MMG
ERA
LEV
CEV

1560+.0405 (3)
.0156+.0135 (1)
2871+.0358 (4)
0641+.0175 (1)
.0660+.0135 (1)
1736+.0157 (3)
:3008+.0135 (3)
1357+.0122 (1)
0346+.0076 (1)

1443£.0371 (2)
.0400+.0106 (3)
2647+.0267 (2)
.0684+.0206 (2)
.0697+.0144 (3)
.1710+.0161 (2)
:3054+.0140 (4)
.1641+.0131 (4)
.1667+.0093 (5)

1845+.0347 (5)
03774.0153 (2)
2706+.0295 (3)
1462+.0218 (5)
0704+.0128 (5)
.1859+.0141 (4)
2907+.0136 (1)
.1500+4.0098 (3)
.0357+.0113 (2)

1628+.0269 (4)
0442+ .0223 (5)
2879+.0269 (5)
13614.0197 (4)
.0699+.0148 (4)
:1900+.0169 (5)
:3084+.0152 (5)
1482+.0112 (2)
.0393+.0090 (3)

1358+.0432 (1
.0417+.0198 (4
2616+.0320 (1
.0700+.0162 (3
.0690+.0171 (2)
.1604+.0139 (1
2928+.0168 (2
.1658+.0202 (5
.0443+.0080 (4

)
)
)
)

)
)
)
)

avg. rank

2

3

3.3

4.1

2.6

DBS
CPU
BCC
MPG
80% ESL
MMG
ERA
LEV
CEV

1363+.0380 (2)
.0089+.0126 (1)
26314.0424 (2)
0526+.0263 (1)
0517+.0235 (1)
1584+.0255 (2)
2855+.0257 (1)
13124.0186 (1)
02214.0091 (1)

-1400+.0336 (4)
.0366-+.0068 (4)
2669+.0483 (3)
.0538+.0282 (2)
.0602+.0264 (2)
.1683+.0231 (3)
2932+.0261 (4)
1662+.0171 (5)
.1643+.0184 (5)

1422+.0498 (5)
.0329+.0295 (2)
2784+.0277 (4)
0669+.0251 (4)
0654+.0228 (3)
1798+.0293 (4)
2885+.0302 (2)
1518+.0104 (3)
0376+.0091 (3)

1386+.0521 (3)
.0384+.0326 (5)
2937+.0297 (5)
.0814+.0309 (5)
.0718+.0188 (5)
1853+.0232 (5)
2951+.0286 (5)
:1390-+.0129 (2)
.0262:+.0067 (2)

:0974+.0560 (1)
.0342+.0232 (3)
2526+.0472 (1)
.0656+.0248 (3)
.0657+.0251 (4)
1521+.0249 (1)
.2894+.0278 (3)
1562+.0252 (4)
.0408.0090 (4)

avg. rank

1.3

3.6

3.3

4.1

2.7

B monotone classifier

B nonlinear classifier



Importance & Interactions (Car Evaluation) +KE 7

interaction index

03
buying price
02
price of maintenance
0.1
number of doors
0
capacity
1-0.1
size of luggage boot
1-0.2
safety
—0.3

buy maint doors cap lug safety

_ Shapley index
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Conclusions & Outlook +

= We advocate the use of the discrete Choquet integral as an aggregation
operator in machine learning, especially in learning monotone models.

= As aconcrete application, we have proposed choquistic regression, a
generalization of logistic regression.

= First experimental results confirm advantages of the Choquet integral.

= Ongoing work: Restriction to k-additive measures, for a properly chosen k
— full flexibility is normally not needed and may even lead to overfitting the data
— advantages from a computational point of view

— key question: how to find a suitable k in an efficient way?
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