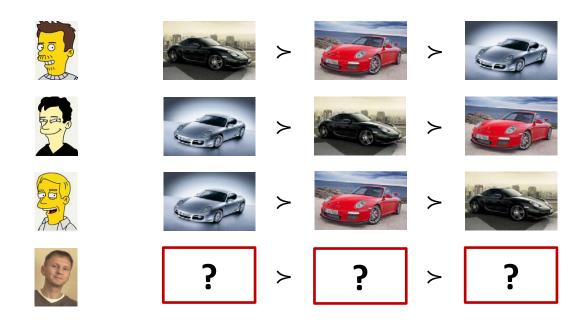
Label Ranking with Abstention

Predicting Partial Orders by Thresholding Probability Distributions

Weiwei Cheng Eyke Hüllermeier

Knowledge Engineering and Bioinformatics Lab
Department of Mathematics and Computer Science
Marburg University, Germany

Label Ranking – An Example



where the customers could be described by feature vectors, e.g., (gender, age, place of birth, has children, ...)

Label Ranking – An Example

 $\pi(i)$ = position of the *i*-th label in the ranking

Label Ranking

Given:

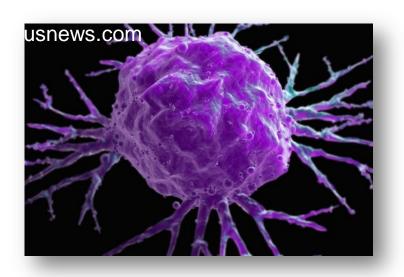
- a set of training instances $\{x_1, ..., x_n\} \subseteq X$
- a set of labels $Y = \{y_1, \dots, y_m\}$
- for each training instance x_k : a set of pairwise preferences of the form $y_i >_{x_k} y_i$ (for some of the labels)

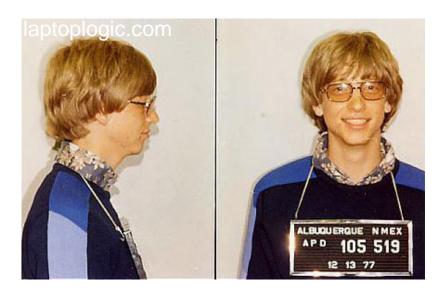
Find:

• A ranking function $(X \to \Omega \text{ mapping})$ that maps each $x \in X$ to a ranking \succ_x of Y (permutation π_x) and generalizes well in terms of a loss function on rankings

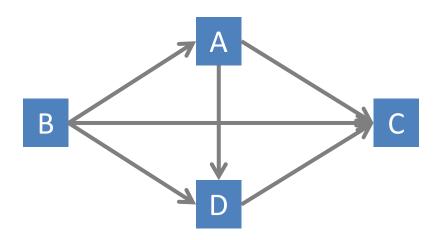
Learning with Reject Option

To train a learner that is able to say "I don't know".





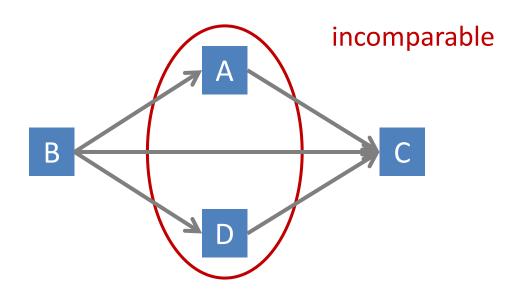
From Total to Partial Order Relations



Partial abstention:

The target is a total order, and a predicted partial order expresses incomplete knowledge about the target .

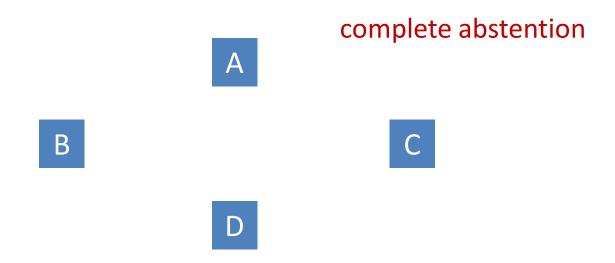
From Total to Partial Order Relations



Partial abstention:

The target is a total order, and a predicted partial order expresses incomplete knowledge about the target .

From Total to Partial Order Relations



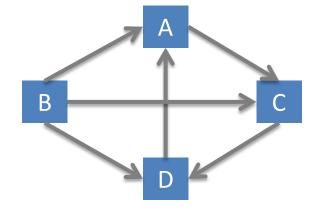
Partial abstention:

The target is a total order, and a predicted partial order expresses incomplete knowledge about the target .

only rely on most confident comparisons → thresholding the relation

	А	В	С	D	
А		0.3	0.8	0.4	P(A, D)
В	0.7		0.9	0.7	thresholding at 0.5
С	0.2	0.1		0.7	
D	0.6	0.3	0.3		

	А	В	С	D
А		0	1	0
В	1		1	1
С	0	0		1
D	1	0	0	



Inconsistent!

only rely on most confident comparisons -> thresholding the relation

	А	В	С	D
А		0.3	0.8	0.4
В	0.7		0.9	0.7
С	0.2	0.1		0.7
D	0.6	0.3	0.3	

	А	В	С	D
А		0	0	0
В	0		0	0
С	0	0		0
D	0	0	0	

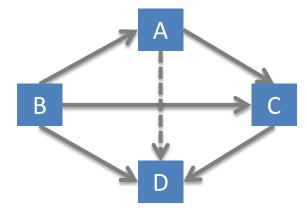
complete abstention

only rely on most confident comparisons → thresholding the relation

	А	В	С	D
А		0.3	0.8	0.4
В	0.7		0.9	0.7
С	0.2	0.1		0.7
D	0.6	0.3	0.3	

thresholding at 0.6

	А	В	С	D
А		0	1	0
В	1		1	1
С	0	0		1
D	0	0	0	



Consistent, but not a partial order!

• **Problem:** Given a (valued) relation P, find the smallest threshold q such that the transitive closure of P_q defines a proper partial order.

→ maximally informative and consistent prediction

• There is an $O(m^3)$ algorithm for this problem, with m the number of labels [Cheng et al., ECMLPKDD2010].

Our Ideas & Results

Can we restrict $P(\cdot,\cdot)$ to exclude the possibility of cycles and violations of transitivity from the very beginning?

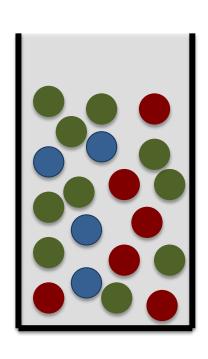
- We make use of label ranking methods that produce probability distributions **P** over the ranking space Ω .
- We show that thresholding pairwise preferences induced by certain distributions yields partial order relations.

... is a **multistage** model specified by a vector $\mathbf{v} = (v_1, ..., v_m) \in \mathbb{R}^m_+$:

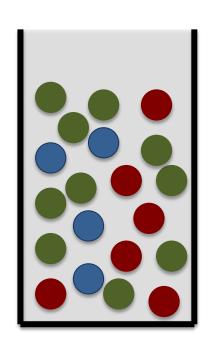
$$\mathbf{P}(\pi \mid \mathbf{v}) = \prod_{i=1}^{m} \frac{v_{\pi^{-1}(i)}}{v_{\pi^{-1}(i)} + v_{\pi^{-1}(i+1)} + \dots + v_{\pi^{-1}(m)}}$$

where $\pi^{-1}(i)$ is the index of the label ranked at position i.

A ranking is produced by choosing labels one by one, with a probability proportional to their respective "skills".

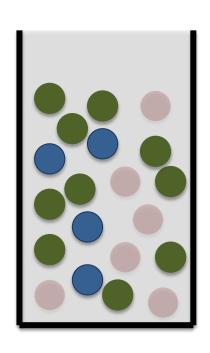


$$v_{\bullet} = 10, \quad v_{\bullet} = 6, \quad v_{\bullet} = 4$$

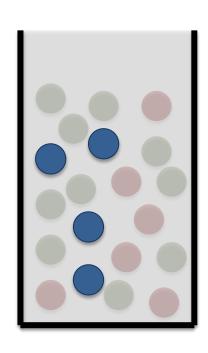


$$v_{\bullet} = 10, \quad v_{\bullet} = 6, \quad v_{\bullet} =$$

$$P(lackbox{0} \ \ \ \ \ \) = rac{6}{20}$$



$$v_{\bullet} = 10, \quad v_{\bullet} = 6, \quad v_{\bullet} = 4$$



$$v_{\bullet} = 10, \quad v_{\bullet} = 6, \quad v_{\bullet} = 4$$

$$\mathbf{P}(\bullet \bullet \bullet) = \frac{6}{20} \times \frac{10}{14} \times \frac{4}{4}$$
$$= \frac{3}{14}$$

The Mallows Model

... is a **distance-based** model from the exponential family:

$$\mathbf{P}(\pi \mid \pi_0, \theta) = \frac{\exp(-\theta \, \Delta(\pi, \pi_0))}{\phi(\theta)}$$
 center ranking spread normalization constant

where $\Delta(\cdot,\cdot)$ is a (right-invariant) metric on rankings.

The probability of a ranking is higher if it is close to the mode, i.e., the center ranking of the distribution.

Some Common Choices of Δ

Kendall's tau

$$T(\pi, \sigma) = \sum_{i < j} \left[\left(\pi(i) - \pi(j) \right) \cdot \left(\sigma(i) - \sigma(j) \right) < 0 \right]$$

Spearman's rho

$$R(\pi, \sigma) = \sqrt{\sum_{i} (\pi(i) - \sigma(j))^2}$$

• Spearman's footrule

$$F(\pi, \sigma) = \sum_{i} |\pi(i) - \sigma(j)|$$

Hamming

$$H(\pi, \sigma) = \sum_{i} [\pi(i) \neq \sigma(i)]$$

For example:

$$\pi = (1\ 2\ 3\ 4), \sigma = (1\ 4\ 2\ 3)$$

$$T(\pi, \sigma) = 2$$

$$R(\pi, \sigma) = 2.45$$

$$F(\pi, \sigma) = 4$$

$$H(\pi, \sigma) = 3$$

Transposition Property

Definition A distance Δ is said to have the *transposition property* iff $\Delta(\pi, \sigma) \leq \Delta(\pi', \sigma)$

for any $\pi, \sigma \in \Omega$ and i, j such that

$$\pi(i) < \pi(j)$$
 and $\sigma(i) < \sigma(j)$.

Here π' is a ranking identical to π , except for a transposition of i and j.

Kendall's tau

Spearman's rho

Spearman's footrule

Hamming

Remarks on $\mathbf{P}(y_i > y_i)$

$$\mathbf{P}(y_i > y_j) = \sum_{\pi \in \mathbf{E}(y_i, y_j)} \mathbf{P}(\pi)$$

$$\pi \in \mathbf{E}(y_i, y_j) \longrightarrow \text{linear extensions of } y_i > y_j$$

e.g., for
$$Y = \{y_1, y_2, y_3\}$$
, $E(y_1, y_2) = \begin{cases} y_1 > y_2 > y_3, \\ y_1 > y_3 > y_2, \\ y_3 > y_1 > y_2 \end{cases}$.

Model	$\mathbf{P}(y_i > y_j)$		
Plackett-Luce	$\frac{v_i}{v_i + v_j}$		
Mallows with Spearman's rho	$\frac{1}{1 + \exp(-2\theta \cdot (\pi_0(j) - \pi_0(i)))}$		
Mallows with Kendall's tau	$\frac{\exp(\theta \cdot \llbracket \pi_0(j) - \pi_0(i) > 0 \rrbracket)}{1 + \exp \theta}$		

Our Main Result

Let the preference relation P be given by a probability distribution **P** on Ω , that is $P(y_i, y_i) = P(y_i > y_i)$.

Theorem Let **P** be

- (1) the Plackett-Luce model or
- (2) the Mallows model with a distance Δ having the transposition property.

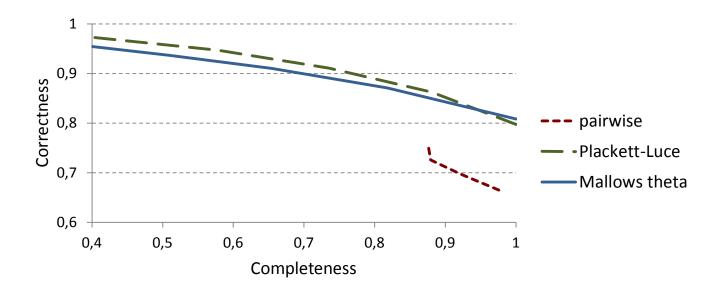
Moreover, let Q be the thresholded relation

$$Q(y_i, y_j) = 1$$
 if $P(y_i, y_j) > q$ and

$$Q(y_i, y_j) = 0$$
 otherwise.

Then Q defines a proper partial order relation for all $q \in [1/2, 1)$.

Experimental Results



- Results on the UCI benchmark data set VOWEL;
- Correctness (measured by gamma rank correlation):

|concordant pairs|-|discordant pairs| |concordant pairs|+|discordant pairs|

• Completeness: 1 — the relative number of pairwise comparisons on which the model abstains.

Take-Away Messages

- A natural way to derive partial orders is via thresholding a (valued) binary preference relation.
- While this may yield inconsistencies in general, we have shown that proper partial orders are produced when restricting to preference relations induced by specific types of probability distributions on rankings.
- This approach is not only theoretically sound, but also performs well in experimental studies.
- While our focus was **on label ranking**, the results immediately apply to other ranking problems, too.

Label Ranking with Abstention

Predicting Partial Orders by Thresholding Probability Distributions

Weiwei Cheng Eyke Hüllermeier

Knowledge Engineering and Bioinformatics Lab
Department of Mathematics and Computer Science
Marburg University, Germany

The statisticians, like the artists, have a bad habit of falling in love with their models.