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Motivation An Exact Algorithm for F-Measure Maximization
— The F-measure is routinely used as a performance metric for different — The algorithm follows the same decomposition of the problem to inner
types of prediction problems, including binary classification, multi-label and outer maximization as in Jansche (2007):
classification, and certain applications of structured output prediction. .
: — : h< S = arg max IE‘j'pr(Y) [F(ya h)] ; (3)
— Given a prediction h = (hy, ..., h,) € {0,1}"" of a binary label vector heH,
Yy = (y1,-...,Ynm), the F-measure is defined as: where Hy, = {h € {0, 1} | Y7 h, = k),
22 iz Vil !
F(y,h) = " i+ ST, € 0,1} , (1) hr= argmax Eu v F(y, h). (4)

he{hY" . nm"

where 0/0 = 1 by definition.
/ Y — Main result: an algorithm that needs m* + 1 parameters and runs in time

— Compared to measures like error rate in binary classification, it enforces a o(m?) to compute the F-measure maximizer exactly.

better balance between performance on the minority and the majority

class, therefore it is more suitable in the case of imbalanced data. General F-Measure Maximizer

— Despite its popularity in experimental settings, only a few methods for DR b [P of el

training classifiers that directly optimize the F-measure have been Pis=p(Yi=1,5y=5), i,s€{l,...,m},

proposed so far.
where sy = > "' y;, and probability p(Y = 0);
define matrix W of elements w,. = (s + k)L, s,k e {l,...,m};
. . . . compute I' = PW;
Optimal Inference for F-Measure Maximization for k = 0 take h(¥)' = 0,and B,y [F(y,0)] = p(Y¥ = 0);
for k = 1tomdo
solve the inner optimization problem (3) that can be reformulated as:

- LetY = (V,Y,,...,Y,,) be arandom variable that follows a joint 1 (k)" m
e .. .. = argmax 2 hfyy
distribution p(Y ) on {0, 1}"". The prediction h* that maximizes the heH,

expected F-measure is given by by setting h; = 1 for top £k elements in the k-th column of matrix F;

store a value of

hy = argmaxE, ) [F(y, h) = argmax Y  p(y) F(y, h). (2) . M
(o} Py he{0,1}™ 4e 0 1ym Bymp(v) [F(y,h<k> )} = 2Zh§k> fif
i=1
— Unfortunately, no closed form solution exists for this optimization end for
problem. solve the outer optimization problem (4):
— This problem cannot be solved naively by brute-force search, since this hp=  agmax  E, 3 [F(y h)];

would require to check all possible combinations of labels (2') and to he{h®,...h""

sum over an exponential (2”') number of elements for computing the return h}, and B,y [F(y, h}));

expected value.

Existing Algorithms Application of the Algorithm
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— The maximum expected utility framework (MEUF) introduced by R e T e
20 40 6_0 80 100 20 40 6_0 80 100 10 20 30 40 50
Jansche (2007) takes marginal probabilities py, ps, . . . p,, as inputs and il 57 sample size e

Performance under the F-measure on synthetic data of four inference methods: GFM, its thresholding
variant GFM-T, MEUF, and its approximate version MEUF Approx. Left: performance as a function of
sample size generated from independent random variables with p; = 0.12 and m = 25 labels. Center: similar
as above, but the distribution is defined by p(Y =y |x) = [[,_, p(Ys = yx |, y1, - - ., yp—1), where all

solves (2) in O(m*) time.

— If the independence assumption is violated, this method may produce

predictions being far away from the optimal one: the worst-case regret p(Y; = yi |y, ..., yi1) are given by logistic models with a linear part —1(i—1)+>_"_} y;. Right: running times
converges to 1 in the limit of m as a function of the number of labels with a sample size of 200. All the results are averaged over 50 trials.
Multinomi a] Distribution; METHOD HAMMING MACRO-F MICRO-F F  INFERENCE HAMMING MACRO-F MICRO-F F  INFERENCE
LOSS TIME [S] LOSS TIME [S]
— Maximizer h}. of (2) consists of the k labels with the highest marginal SCENE: m = 6 (1211/1169) YEAST: m = 14 (1500/917)
o EER . . . . k . . PCCH 0.1030 0.6673 0.6675 0.5779 0.969 0.2046 0.3633 0.6391 0.6160 3.704
prObabllltleS’ Where k 1S the flrSt lnteger f()l‘ Wthh ijl p] Z (1 —|_ k>pk+1’ PCC GEM 0.1341 0.7159 0.6915 0.7101 0.985 0.2322 0.4034 0.6554 0.6479 3.796
. . . . PCC GEM-T 0.1343 0.7154 0.6908 0.7094 1.031 0.2324 0.4039 0.6553 0.6476 3.907
lf there 1S NO SUCh lnteger’ then h T 1 (Del COZ et al" 2009) PCC MEUF APPROX. 0.1323 0.7131 0.6910 0.6977 1.406 0.2295 0.4030 0.6551 0.6469 10.000
PCC MEUF 0.1323 0.7131 0.6910 0.6977 1.297 0.2292 0.4034 0.6557 0.6477 11.453
. . eqe e . BR 0.1023 0.6591 0.6602 0.5542 1.125 0.1987 0.3349 0.6299 0.6039 0.640
ThreShOIdlng on Ordered Margmal Probabilities: BR MEUF APPROX.  0.1140  0.7048 0.6948 0.6468 1579  0.2248  0.4098 0.6601 0.6527 7.110
Th F . . . 1 . . h h d f . 1 BR MEUF 0.1140 0.7048 0.6948 0.6468 2.094 0.2263 0.4096 0.6591 0.6523 10.031
— I'he F-maximizer 1s not necessarily consistent with the order of margina PO = (115570 TSR o — 01 (G990 175
1abel prObabllltleS: PCCH 0.0471 0.1141 0.5185 0.4892 195.061 0.0304 0.0931 0.5577 0.5429 1405.772
PCC GFM 0.0521 0.1618 0.5943 0.6006 194.889 0.0348 0.1491 0.5849 0.5734 1420.663
y p(y) PCC GEM-T 0.0521 0.1619 0.5948 0.6011 196.030 0.0348 0.1499 0.5854 0.5737 1464.147
PCC MEUF APPROX. 0.0523 0.1612 0.5932 0.6007 1081.837 0.0350 0.1504 0.5871 0.5740 308582.019
PCC MEUF 0.0523 0.1612 0.5932 0.6007 6676.145 - - - - -
1 O O O O O O O O O 048 BR 0.0468 0.1049 0.5223 0.4821 8.594 0.0304 0.1429 0.5623 0.5462 207.655
BR MEUF APPROX. 0.0513 0.1554 0.5969 0.5947 850.494 0.3508 0.1917 0.5889 0.5744 258431.125
O 1 1 1 1 1 O O O O 026 BR MEUF 0.0513 0.1554 0.5969 0.5947 7014.453 - - - - -

0100001111 0.26

Experimental results on four multi-label benchmark datasets. Inference algorithms are used with
Probabilistic Classifier Chains (PCC) (Dembczynski et al. 2010) and Binary Relevance (BR). Main statistics
for each dataset are given: the number of labels (m), the size of training and test sets (training/test set).

label but the second one exhibits the highest marginal pr obablhty Symbol “-” indicates that an algorithm did not complete the computation in a reasonable time (several days).
In bold: the best results for a given dataset and given performance measure.

The F-measure maximizer is given by (10000000 0 0); yet, not the first
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