
AN EXACT ALGORITHM FOR F-MEASURE MAXIMIZATION
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Motivation

– The F-measure is routinely used as a performance metric for different
types of prediction problems, including binary classification, multi-label
classification, and certain applications of structured output prediction.

– Given a prediction h = (h1, . . . , hm) ∈ {0, 1}m of a binary label vector
y = (y1, . . . , ym), the F-measure is defined as:

F (y, h) =
2
∑m

i=1 yihi∑m
i=1 yi +

∑m
i=1 hi

∈ [0, 1] , (1)

where 0/0 = 1 by definition.

– Compared to measures like error rate in binary classification, it enforces a
better balance between performance on the minority and the majority
class, therefore it is more suitable in the case of imbalanced data.

– Despite its popularity in experimental settings, only a few methods for
training classifiers that directly optimize the F-measure have been
proposed so far.

Optimal Inference for F-Measure Maximization

– Let Y = (Y1, Y2, . . . , Ym) be a random variable that follows a joint
distribution p(Y ) on {0, 1}m. The prediction h∗ that maximizes the
expected F-measure is given by

h∗F = arg max
h∈{0,1}m

Ey∼p(Y ) [F (y, h)] = arg max
h∈{0,1}m

∑
y∈{0,1}m

p(y) F (y, h). (2)

– Unfortunately, no closed form solution exists for this optimization
problem.

– This problem cannot be solved naively by brute-force search, since this
would require to check all possible combinations of labels (2m) and to
sum over an exponential (2m) number of elements for computing the
expected value.

Existing Algorithms

Label Independence:

– The optimal solution always contains the labels with the highest
marginal probabilities or no label.

– The maximum expected utility framework (MEUF) introduced by
Jansche (2007) takes marginal probabilities p1, p2, . . . pm as inputs and
solves (2) in O(m4) time.

– If the independence assumption is violated, this method may produce
predictions being far away from the optimal one: the worst-case regret
converges to 1 in the limit of m.

Multinomial Distribution:

– Maximizer h∗F of (2) consists of the k labels with the highest marginal
probabilities, where k is the first integer for which

∑k
j=1 pj ≥ (1 + k)pk+1;

if there is no such integer, then h = 1 (Del Coz et al., 2009).

Thresholding on Ordered Marginal Probabilities:

– The F-maximizer is not necessarily consistent with the order of marginal
label probabilities:

y p(y)

1 0 0 0 0 0 0 0 0 0 0.48
0 1 1 1 1 1 0 0 0 0 0.26
0 1 0 0 0 0 1 1 1 1 0.26

The F-measure maximizer is given by (1 0 0 0 0 0 0 0 0 0); yet, not the first
label but the second one exhibits the highest marginal probability.

An Exact Algorithm for F-Measure Maximization

– The algorithm follows the same decomposition of the problem to inner
and outer maximization as in Jansche (2007):

h(k)∗ = arg max
h∈Hk

Ey∼p(Y ) [F (y, h)] , (3)

where Hk = {h ∈ {0, 1}m | ∑m
i=1 hi = k},

h∗F = arg max
h∈{h(0)∗,...,h(m)∗}

Ey∼p(Y ) [F (y, h)] . (4)

– Main result: an algorithm that needs m2 + 1 parameters and runs in time
o(m3) to compute the F-measure maximizer exactly.

General F-Measure Maximizer

INPUT: matrix P of elements

pis = p(Yi = 1 , sy = s), i, s ∈ {1, . . . ,m} ,

where sy =
∑m

i=1 yi, and probability p(Y = 0);

define matrix W of elements wsk = (s + k)−1, s, k ∈ {1, . . . ,m};
compute F = PW;
for k = 0 take h(k)∗ = 0, and Ey∼p(Y ) [F (y,0)] = p(Y = 0);
for k = 1 to m do

solve the inner optimization problem (3) that can be reformulated as:

h(k)∗ = arg max
h∈Hk

2

m∑
i=1

hifik

by setting hi = 1 for top k elements in the k-th column of matrix F;
store a value of

Ey∼p(Y )

[
F (y, h(k)∗)

]
= 2

m∑
i=1

h
(k)∗

i fik;

end for
solve the outer optimization problem (4):

h∗F = arg max
h∈{h(0)∗,...,h(m)∗}

Ey∼p(Y ) [F (y, h)] ;

return h∗F and Ey∼p(Y )

[
F (y, h∗F )

]
;

Application of the Algorithm
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Performance under the F-measure on synthetic data of four inference methods: GFM, its thresholding
variant GFM-T, MEUF, and its approximate version MEUF Approx. Left: performance as a function of
sample size generated from independent random variables with pi = 0.12 and m = 25 labels. Center: similar
as above, but the distribution is defined by p(Y = y |x) =

∏m
k=1 p(Yk = yk |x, y1, . . . , yk−1), where all

p(Yi = yi | y1, . . . , yi−1) are given by logistic models with a linear part −1
2(i−1)+

∑i−1
j=1 yj. Right: running times

as a function of the number of labels with a sample size of 200. All the results are averaged over 50 trials.

METHOD HAMMING MACRO-F MICRO-F F INFERENCE HAMMING MACRO-F MICRO-F F INFERENCE
LOSS TIME [S] LOSS TIME [S]

SCENE: m = 6 (1211/1169) YEAST: m = 14 (1500/917)

PCC H 0.1030 0.6673 0.6675 0.5779 0.969 0.2046 0.3633 0.6391 0.6160 3.704
PCC GFM 0.1341 0.7159 0.6915 0.7101 0.985 0.2322 0.4034 0.6554 0.6479 3.796
PCC GFM-T 0.1343 0.7154 0.6908 0.7094 1.031 0.2324 0.4039 0.6553 0.6476 3.907
PCC MEUF APPROX. 0.1323 0.7131 0.6910 0.6977 1.406 0.2295 0.4030 0.6551 0.6469 10.000
PCC MEUF 0.1323 0.7131 0.6910 0.6977 1.297 0.2292 0.4034 0.6557 0.6477 11.453
BR 0.1023 0.6591 0.6602 0.5542 1.125 0.1987 0.3349 0.6299 0.6039 0.640
BR MEUF APPROX. 0.1140 0.7048 0.6948 0.6468 1.579 0.2248 0.4098 0.6601 0.6527 7.110
BR MEUF 0.1140 0.7048 0.6948 0.6468 2.094 0.2263 0.4096 0.6591 0.6523 10.031

ENRON: m = 53 (1123/579) MEDIAMILL: m = 101 (30999/12914)

PCC H 0.0471 0.1141 0.5185 0.4892 195.061 0.0304 0.0931 0.5577 0.5429 1405.772
PCC GFM 0.0521 0.1618 0.5943 0.6006 194.889 0.0348 0.1491 0.5849 0.5734 1420.663
PCC GFM-T 0.0521 0.1619 0.5948 0.6011 196.030 0.0348 0.1499 0.5854 0.5737 1464.147
PCC MEUF APPROX. 0.0523 0.1612 0.5932 0.6007 1081.837 0.0350 0.1504 0.5871 0.5740 308582.019
PCC MEUF 0.0523 0.1612 0.5932 0.6007 6676.145 - - - - -
BR 0.0468 0.1049 0.5223 0.4821 8.594 0.0304 0.1429 0.5623 0.5462 207.655
BR MEUF APPROX. 0.0513 0.1554 0.5969 0.5947 850.494 0.3508 0.1917 0.5889 0.5744 258431.125
BR MEUF 0.0513 0.1554 0.5969 0.5947 7014.453 - - - - -

Experimental results on four multi-label benchmark datasets. Inference algorithms are used with
Probabilistic Classifier Chains (PCC) (Dembczynski et al. 2010) and Binary Relevance (BR). Main statistics
for each dataset are given: the number of labels (m), the size of training and test sets (training/test set).
Symbol “-” indicates that an algorithm did not complete the computation in a reasonable time (several days).
In bold: the best results for a given dataset and given performance measure.
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