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Preferences Learning Settings 

 binary vs. graded (e.g., relevance judgments vs. ratings)  

 absolute vs. relative (e.g., assessing single alternatives vs. comparing pairs) 

 explicit vs. implicit (e.g., direct feedback vs. click-through data) 

 structured vs. unstructured (e.g., ratings on a given scale vs. free text) 

 single user vs. multiple users (e.g., document keywords vs. social tagging) 

 single vs. multi-dimensional  

 ... 

 

 

A wide spectrum of learning problems! 
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Preference Learning Tasks 

task input output training prediction ground truth 
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Two main directions: (1) ranking and variants (2) generalizations of classification 

representation type of preference information 
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Agenda 

1. Introduction to Preference Learning 

2. Label Ranking 

3. Extensions and Applications 

4. Conclusions 
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Instances are mapped to total orders over a fixed set 
of alternatives/labels.  

Label Ranking – An Example 

≻ ≻ 

≻ ≻ 

≻ ≻ 

? ? ? ≻ ≻ 
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Label Ranking: Training Data 

X1 X2 X3 X4 Preferences 

0.34 0 10 174 A ≻ B, C ≻ D 

1.45 0 32 277 B ≻ C 

1.22 1 46 421 B ≻ D, A ≻ D, C ≻ D, A ≻ C 

0.74 1 25 165 C ≻ A, C ≻ D, A ≻ B 

0.95 1 72 273 B ≻ D, A ≻ D 

1.04 0 33 158 D ≻ A, A ≻ B, C ≻ B, A ≻ C 

TRAINING 

Instances are 
associated with 
pairwise 
preferences 
between labels. 

... no demand for full rankings! 

9 



0.92 1 81 382 ? ? ? ? 

Label Ranking: Prediction 

PREDICTION 

new instance ranking ? 

A B C D 
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0.92 1 81 382 4 1 3 2 

Label Ranking: Prediction 

PREDICTION 

new instance 𝜋(𝑖) = position of i-th label 

A B C D 
A ranking of 
all labels 
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0.92 1 81 382 2 1 3 4 

0.92 1 81 382 4 1 3 2 

Label Ranking: Prediction 

PREDICTION 
A ranking of 
all labels 

GROUND TRUTH 

S P E A R M A N  

LOSS 

RANK CORRELATION 

LOSS 

𝜌 = 1 −
6 𝐿2(𝜋, 𝜍)

𝑛(𝑛2 − 1)
 

𝐿(𝜋, 𝜍) =  𝜋 𝑖 − 𝜍 𝑗
2

𝑛

𝑖<1
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0.92 1 81 382 2 1 3 4 

0.92 1 81 382 4 1 3 2 

Label Ranking: Prediction 

PREDICTION 
A ranking of 
all labels 

GROUND TRUTH 

K E N D A L L  

LOSS 

RANK CORRELATION 

LOSS 

𝜏 = 1 −
4 𝐿(𝜋, 𝜍)

𝑘(𝑘 − 1)
 

𝐿(𝜋, 𝜍) =   𝜋 𝑖 − 𝜋 𝑗 ⋅ 𝜍 𝑖 − 𝜍 𝑗 < 0

1≤𝑖<𝑗≤𝑘
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The output space is complex ... 

Learning Techniques 

How to learn a label ranker ℎ ∶ 𝑋 → 𝑆𝑛? 
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The output space is the class of permutations (symmetric group):  

123 

213 132 

231 312 

321 
Kendall 
distance of 1 

The Permutation Space 

symmetric group 𝑆3 
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The Permutation Space 

symmetric group 𝑆4 

3214 

1324 

2134 

1234 

2143 

1243 

2314 2341 

1423 4123 

1432 4132 

2431 

2413 

4213 

3124 

3142 

1342 

3241 

4231 

3421 

3412 

4321 

4312 
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Two approaches: 

 Reduction to simpler problems (e.g., binary classification) 

 Probabilistic modeling and statistical inference 

How to learn a label ranker ℎ ∶ 𝑋 → 𝑆𝑛? 

Learning Techniques 
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Learning Techniques 

ranking by pairwise comparison 

[Hüllermeier et al., AI 08] 

 

constraint classification  

[Har-Peled et al., NIPS 02] 

 

log-linear models for label ranking 

[Dekel et al., NIPS 03] 

 

structured output prediction 

[Vembu et al., UAI 09] 

 

local prediction (lazy learning) 

[Brinker et al. ECML 06 , Cheng et al., ICML 09] 

 

label ranking with probabilistic models 

[Cheng et al., ICML 09, Cheng et al., ICML 10] 

reduction to binary 
classification 

learning utility functions 

learning pairwise 
preferences 

structured 
prediction 

structured output 
 prediction, margin  

maximization 

boosting 

statistical 
inference 
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Two approaches: 

 Reduction to simpler problems (e.g., binary classification) 

 Probabilistic modeling and statistical inference 

How to learn a label ranker ℎ ∶ 𝑋 → 𝑆𝑛? 

Learning Techniques 
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input 𝑥 ↦ 

Probabilistic Label Ranker 

permutation probability 

0.2 

0 

0.1 

0.4 

0.1 

0 

 

Need a parameterized family of distributions on 
the permutation space! 
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statistical ranking models 
 

Mallows model 
 

Plackett-Luce model  

machine learning techniques 
 

instance-based learning 
 

generalized linear model 

Label Ranking with Probabilistic Models 

21 



The Mallows Model 

… is a distance-based model from the exponential family: 

 

𝐏 𝜍  𝜋, 𝜃 =
exp(−𝜃 Δ(𝜍, 𝜋))

𝜙(𝜃)
 

  

where Δ(⋅,⋅) is a metric (i.e., distance measure) on rankings. 

 

 

 
The probability of a ranking is higher if it is close to the mode, 

i.e., the center ranking of the distribution. 

center ranking spread normalization constant 
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Some Common Choices of Δ 

Kendall’s tau  

 T 𝜋, 𝜍  =    𝜋 𝑖 − 𝜋 𝑗 ⋅ 𝜍 𝑖 − 𝜍 𝑗 < 0𝑖<𝑗  

 

Spearman’s rho 

 R 𝜋, 𝜍  =   𝜋 𝑖 − 𝜍 𝑗
2

𝑖  

 

Spearman’s footrule 

 F 𝜋, 𝜍  =      𝜋 𝑖 − 𝜍 𝑗  𝑖  

 

Hamming 

 H 𝜋, 𝜍  =     𝜋 𝑖 ≠ 𝜍 𝑖𝑖  

 

For example:  
 
𝜋 = 1 2 3 4 , 𝜍 = 1 4 2 3  

 
T 𝜋, 𝜍 = 2 

R 𝜋, 𝜍 = 2.45 
F 𝜋, 𝜍 = 4 
H 𝜋, 𝜍 = 3  
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statistical ranking models 
 

Mallows model 
 

Plackett-Luce model  

machine learning techniques 
 

instance-based learning 
 

generalized linear model 

Label Ranking with Probabilistic Models 
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The Plackett-Luce Model 

… is a multistage model specified by a vector 𝒗 = 𝑣1, … , 𝑣𝑛 ∈ R:
𝑛 : 

 

𝐏 𝜍  𝒗 =  
𝑣𝜎−1(𝑖)

𝑣𝜎−1 𝑖 + 𝑣𝜎−1 𝑖:1 +⋯+ 𝑣𝜎−1 𝑛

𝑛

𝑖<1

 

 

where 𝜍;1(𝑖) is the index of the label ranked at position 𝑖. 

 

A ranking is produced by choosing labels one by one, with a 
probability proportional to their respective “skills”. 
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𝑣    = 10, 𝑣    = 6, 𝑣    = 4 

The Plackett-Luce Model 

𝐏                         =  
6

20
×
10

14
×
4

4
 

              

             =
3

14
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3
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𝑣    = 10, 𝑣    = 6, 𝑣    = 4 

27 



The Plackett-Luce Model 
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×
4

4
 

              

             =
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𝑣    = 10, 𝑣    = 6, 𝑣    = 4 
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𝐏                         =  
6

20
×
10

14
×
4

4
 

              

             =
3

14
 

The Plackett-Luce Model 

𝑣    = 10, 𝑣    = 6, 𝑣    = 4 
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𝐏                         =  
6

20
×
10

14
×
4

4
 

              

             =
3

14
 

= 
6

16
×
10

10
×
4

4
 ×

10

10
×
4

4
 

The Plackett-Luce Model 

=
3

8
 

𝑣    = 10, 𝑣    = 6, 𝑣    = 4 
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statistical ranking models 
 

Mallows model 
 

Plackett-Luce model  

machine learning techniques 
 

instance-based learning 
 

generalized linear model 

Results from: Cheng and Hüllermeier, ICML 09; Cheng et al., ICML 10 

Label Ranking with Probabilistic Models 
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Instance-Based Approaches 

 Target function X → Ω is estimated (on demand) in a local way. 

 Distribution of rankings is (approx.) constant in a local region. 

 Core part is to estimate the locally constant model. 

1 ≻ 2 ≻ 3 

1 ≻ 3 ≻ 2 

1 ≻ 3 ≻ 2 
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Instance-Based Approaches 

 Output (ranking) of an instance 𝒙 is generated according to a 
distribution 𝐏 ⋅ | 𝒙  on Ω. 

 

 This distribution is (approximately) constant within the local region 
under consideration. 

 

 Nearby preferences are considered as a sample generated by 𝐏, 
which is estimated on the basis of this sample via maximum 
likelihood estimation. The likelihood function: 

𝐏 neighborhood data | parameters =  𝐏 𝜍𝑖   𝝎)

𝑘

𝑖<1
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Rankings 𝝈 = *𝜍1, … , 𝜍𝑘+ observed locally 

Inference for Mallows (complete rankings) 

𝜋 = argmin  T(𝜍𝑖 , 𝜋)

𝑘

𝑖<1

 
𝜋 ∈ Ω 

1

𝑘
 T 𝜍𝑖 , 𝜋 

𝑘

𝑖<1

 

=
𝑛 exp(−𝜃)

1 − exp(−𝜃)
− 

𝑗 exp(−j𝜃)

1 − exp (−𝑗𝜃)

𝑛

𝑗<1

 
=

exp −𝜃  T 𝜍𝑖 , 𝜋
𝑘
𝑖<1

 
1 − exp −𝑗𝜃
1 − exp −𝜃

𝑛
𝑗<1

𝑘 

=  
exp (−𝜃 T(𝜍𝑖 , 𝜋))

𝜙(𝜃)

𝑘

𝑖<1

 

𝐏 𝝈  𝜃, 𝜋) =  𝐏 𝜍𝑖  𝜃, 𝜋) 

𝑘

𝑖<1

 

=
exp −𝜃 T 𝜍1, 𝜋 + ⋯+ T 𝜍𝑘 , 𝜋

𝜙𝑘(𝜃)
 monotone in 𝜃 

ML 
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Given a probability 𝐏 ⋅  on 𝑆𝑛, the probability of an incomplete 
ranking 𝜍 is given by the probability of its linear extensions:  
 

𝐏 𝜍  = 𝐏 𝐸 𝜍 =  𝑃 𝜋

𝜋∈𝐸(𝜎)

 

Probability of Incomplete Rankings 

linear extensions 
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Probability of Incomplete Rankings 

𝐏 A ≻ C = 

36 



Probability of Incomplete Rankings 

𝐏 A ≻ C = 0.54 
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The corresponding likelihood: 

 
 

        

 

 

 

  

 
Exact MLE 𝜋 , 𝜃 = argmax 𝐏 𝝈  𝜃, 𝜋) becomes infeasible when  

𝑛 is large. Approximation is needed. 

 

=   𝐏 𝛾  𝜃, 𝜋)

𝛾∈𝐸(𝜎𝑖)

𝑘

𝑖<1

 

𝐏 𝝈  𝜃, 𝜋) =  𝐏 𝐸(𝜍𝑖)  𝜃, 𝜋) 

𝑘

𝑖<1

 

=
  exp −𝜃 T 𝛾, 𝜋𝛾∈𝐸(𝜎𝑖)

𝑘
𝑖<1

 
1 − exp −𝑗𝜃
1 − exp −𝜃

𝑛
𝑗<1

𝑘  

𝜋, 𝜃 

Inference for Mallows (incomplete rankings) 
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Approximation via a variant of EM, viewing the non-observed labels 
as hidden variables.  

Key idea: replacing the E-step of EM algorithm with a maximization 
step (widely used in learning HMM, K-means clustering, etc.) 

 

1. Start with an initial center ranking (via generalized Borda count) 

2. Replace an incomplete observation with its most probable extension 
(first M-step, can be done efficiently) 

3. Obtain MLE as in the complete ranking case (second M-step) 

4. Replace the initial center ranking with current estimation 

5. Repeat until convergence 

Inference for Mallows (incomplete rankings) 1 2 4 3 

1 2 4 3 

1 2 4 3 4 3 
1 2 3 4 

1 4 3 

1 2 3 4 
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Inference for Plackett-Luce 

The probability to observe the rankings 
𝝈 = *𝜍1, … , 𝜍𝑘+ in the neighborhood: 
 

𝐏(𝝈 | 𝒗) =   
𝑣𝜎𝑖

−1(𝑗) 

𝑣𝜎𝑖
−1(1) +⋯+ 𝑣𝜎𝑖

−1(𝑛𝑖) 

𝑛𝑖

𝑗<1

𝑘

𝑖<1

 

 
 
Corresponding MLE can be efficiently  
done through, e.g., MM (minorization  
and maximization) algorithm. 

1 ≻ 2 ≻ 3 

1 ≻ 3 ≻ 2 

1 ≻ 3 ≻ 2 
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Sushi Data Set 

Rankings of 10 types of sushi by 5000 customers.  
Each customer is characterized by 11 features. 

Collected by Kamishima et al. Preprocessed by Grbovic. 
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Experimental Results 

Main observation 

 Mallows vs PL model: the former is better for complete rankings 
and the latter is better for incomplete ones. 
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IB-PL

Lin-LL

more     amount of preference information     less 

probability of missing labels 

.33 

.32 

.31 

.30 

.29 

.28 

IB-Mallows 

IB-PL 
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0,3

0,31

0,32

0,33

0% 10% 20% 30% 40% 50% 60% 70%

IB-M

IB-PL

Lin-LL

more     amount of preference information     less 

probability of missing labels 

.33 

.32 

.31 

.30 

.29 

.28 

Experimental Results 

Main observation 

 Mallows vs PL model: the former is better for complete rankings 
and the latter is better for incomplete ones. 

 Instance-based methods are more flexible and have higher variance 
and lower bias compared to the log-linear approach. 

IB-Mallows 

IB-PL 

Log-linear 
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statistical ranking models 
 

Mallows model 
 

Plackett-Luce model  

machine learning techniques 
 

instance-based learning 
 

generalized linear model 

Results from: Cheng et al., ICML 10 

Label Ranking with Probabilistic Models 
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Recall the PL model: 

𝐏 𝜋  𝒗 =  
𝑣𝜎−1(𝑖)

𝑣𝜎−1 𝑖 + 𝑣𝜎−1 𝑖:1 +⋯+ 𝑣𝜎−1 𝑛

𝑛

𝑖<1

 

 
We model the parameter 𝑣𝑖  as a linear function of the features 
describing the instance: 

𝑣𝑖 = exp  𝛼𝑗
(𝑖)

𝑑

𝑗<1

⋅ 𝑥𝑗 , 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑑 

 

A Generalized Linear Model based on PL 
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Given training data 𝐷 = 𝒙 𝑘 , 𝜍 𝑘
𝑘<1

𝑚
 with 𝒙 𝑘 = 𝑥1

𝑘 , … , 𝑥𝑑
𝑘 , 

the log-likelihood function is  
 

𝐏 𝐷  𝜶 =   log 𝑣 𝜍 𝑘 𝑖 , 𝑘 − log 𝑣 𝜍 𝑘 𝑗 , 𝑘

𝑛𝑘

𝑗<𝑖

𝑛𝑘

𝑖<1

𝑚

𝑘<1

 

 

where 𝜍 𝑖 = 𝜍;1 𝑖  is the index of the label ranked at position 𝑖, 𝑛𝑘  is 

the number of labels in the ranking 𝜍(𝑘), and  
 

𝑣 𝑖, 𝑘 = exp  𝛼𝑗
𝑖

𝑑

𝑗<1

⋅ 𝑥𝑗
𝑘 . 

 

It is convex! 

Maximum Likelihood Estimation 
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Main observation 

Instance-based methods are more flexible; generalized linear models 
are more robust. 

0,29

0,3

0,31

0,32

0% 10% 20% 30% 40% 50% 60% 70%

IB-PL

Lin-PL

more     amount of preference information     less 

probability of missing labels 

.33 .32 

.31 

.30 

.29 

Experimental Results 
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Agenda 

1. Introduction to Preference Learning 

2. Label Ranking 

3. Extensions and Applications 

4. Conclusions 
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Learning with Reject Option 

To train a learner that is able to say “I don’t know”. 
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.41 
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.53 

percentages of used instances (sorted according to reliability) 

10%  90%  30%  50% 70% 

ra
n

ki
n

g 
p

e
rf

o
rm

an
ce

 

Label Ranking with Rejects 

The above accuracy-rejection curve confirms the outputs of the 
probabilistic models can be used as a reliability measure. 
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From Total to Partial Order Relations 

incomparable 

Partial abstention:  
The target is a total order, and a predicted partial order expresses 
incomplete knowledge about the target . 

b 

a 

d 

c 
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only rely on most confident comparisons  thresholding the relation 

a b c d 

a 0.3 0.8 0.4 

b 0.7 0.9 0.7 

c 0.2 0.1 0.7 

d 0.6 0.3 0.3 

a b c d 

a  0 1 0 

b 1 1 1 

c 0 0 1 

d 1 0 0 

thresholding at 0.5 

d 

a 

c b Inconsistent! 

P a, d = 𝐏(a ≻ d) 

Partial Orders from Pairwise Comparisons 
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a b c d 

a 0.3 0.8 0.4 

b 0.7 0.9 0.7 

c 0.2 0.1 0.7 

d 0.6 0.3 0.3 

a b c d 

a  0 0 0 

b 0 0 0 

c 0 0 0 

d 0 0 0 

d 

a 

c b 

thresholding at 1 

only rely on most confident comparisons  thresholding the relation 

complete abstention 

Partial Orders from Pairwise Comparisons 
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a b c d 

a 0.3 0.8 0.4 

b 0.7 0.9 0.7 

c 0.2 0.1 0.7 

d 0.6 0.3 0.3 

a b c d 

a  0 1 0 

b 1 1 1 

c 0 0 1 

d 0 0 0 

thresholding at 0.6 

d 

a 

c b 
Consistent, but not a 
partial order! 

only rely on most confident comparisons  thresholding the relation 

Partial Orders from Pairwise Comparisons 
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Our Ideas & Results 

 We make use of label ranking methods that produce probability 
distributions 𝐏 over the ranking space Ω. 

 

 We show that thresholding pairwise preferences induced by certain 
distributions yields partial order relations. 

Can we restrict P(⋅,⋅) to exclude the possibility of cycles 
and violations of transitivity from the very beginning? 

Results from: Cheng et al., NIPS 2012. 
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Theoretical Results 

Let the preference relation P be given by a probability distribution 𝐏 

on Ω, that is P 𝑦𝑖 , 𝑦𝑗 = 𝐏 𝑦𝑖 ≻ y𝑗 =  𝐏(𝜍)𝜎 ∈ E 𝑦𝑖 , 𝑦𝑗
.  

 

 

 

Theorem Let 𝐏 be 

(1) the Plackett-Luce model or 

(2) the Mallows model with a distance Δ having the 
transposition property. 

Moreover, let Q be the thresholded relation  

Q 𝑦𝑖 , 𝑦𝑗 = 1 if P 𝑦𝑖 , 𝑦𝑗 > 𝑞 and  

Q 𝑦𝑖 , 𝑦𝑗 = 0 otherwise. 

Then Q defines a proper partial order relation for all 𝑞 ∈ ,1 2 , 1). 
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Theoretical Results 

Theorem Let ℛPL denote the set of different partial orders (up to 
isomorphism) that can be represented as a thresholded relation 
Q, where P is derived according to the Plackett-Luce model. For 
any given threshold 𝑞 ∈ ,1 2 , 1), the cardinality of this set is given 
by the 𝑛th Catalan number: 

|ℛPL| =
1

𝑛 + 1

2𝑛

𝑛
  

Theorem Let ℛM denote the set of different partial orders (up to 
isomorphism) that can be represented as a thresholded relation 
Q, where P is derived according to the Mallows model with Kendal 
distance. For any given threshold 𝑞 ∈ ,1 2 , 1), the cardinality of 
this set |ℛM| = 𝑛.  
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Multi-Label Classification 

 An instance can belong to multiple classes. 

 Complex structured information may exist 

(e.g., label dependency). 

X1 X2 X3 Y1 Y2 Y3 Y4 

0.34 0 10 1 0 1 0 

It can be solved by (1) label ranking and then (2) grouping, e.g.,   
[Fürnkranz et al., ML 08] 

ranking with ties 
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Reinforcement Learning 

 Learning to behave optimally in uncertain 

dynamic environments. 

 A policy maps states to actions. 

 Feedback is often of a qualitative nature! 

State S 

A 

B 

C 

D 

Reinforcement Learning with Qualitative Feedback (DFG). 

L AB EL  RAN K IN G 

[Cheng et al., ECMLPKDD 11] 

[Fürnkranz et al., ML 11] 
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Summary 
 Preference learning is 

 methodologically interesting,  

 theoretically challenging, 

 and practically useful, with many potential applications; 

 more general than could be shown in this talk („preferences“ in the broad 

sense, standard ML problems as special cases, ...); in fact, a flexible machine 

learning framework for learning from weak supervision; 

 interdisciplinary (connections to operations research, decision sciences,  

economics, social choice, recommender systems, information retrieval, ...). 

  We discuss label ranking, which, albeit being a specific type of 

preference learning problem, shares commonalities with other 

problems in this field. 

 Label ranking with probabilistic models; predicting partial orders via 

thresholding; applications … 
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